Scholarly Work - Earth Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8747

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    Item
    An oviraptorosaur adult-egg association from the Cretaceous of Jiangxi Province, China
    (2019-11) Jin, Xingsheng; Varricchio, David J.; Poust, Ashley W.; He, Tao
    With abundant well-preserved clutches and several adult-clutch associations, oviraptorids provide some of the most detailed information on reproduction for dinosaurs. Here, we describe an oviraptorosaur closely associated with two eggs from the Upper Cretaceous Nanxiong Formation of Jiangxi Province, China, and discuss its implications for various reproductive hypotheses. The specimen consists of a partial skeleton (gastralia, pelvis, portions of both hind limbs, and tail), with one egg within the pelvic canal and the other just posterior to it, ventral to the anterior caudal vertebrae. Several geopetal features indicate that the individual came to rest on its left side, with the eggs likely extruded during buildup of abdominal gases during decomposition. Similarity of pubis, caudal vertebrae, and pes dimensions to recently described material from the formation, e.g., Tongtianlong and Jiangxisaurus, suggests oviraptorid affinities. The specimen provides additional association of elongatoolithid eggs and the oogenus Macroolithus with oviraptorosaurs and further evidence for monoautochronic ovulation, i.e., iterative laying of two eggs at daily or greater intervals. With each egg 36–48% the size predicted for a modern bird of the same adult mass, total egg production would be slightly lower to similar between this non-avian maniraptoran and Neornithes. Histological tissues and open neurocentral sutures indicate that this reproductively active individual was several years old but still growing at the time of death, a pattern observed in other non-avian maniraptorans. The complete absence of medullary bone in this egg-bearing individual may challenge the identification of this tissue in other dinosaurs more distantly related to birds.
  • Thumbnail Image
    Item
    Insect trace fossils elucidate depositional environments and sedimentation at a dinosaur nesting site from the Cretaceous (Campanian) Two Medicine Formation of Montana
    (2019-11) Freimuth, William J.; Varricchio, David J.
    We describe the diversity and abundance of insect (specifically hymenopterans and coleopterans) pupation structures in the Upper Cretaceous (Campanian) Two Medicine Formation at the Egg Mountain locality, western Montana, U.S.A., an important dinosaur nesting site. The study interval comprises a massive calcareous siltstone and indurated silty limestone horizons interpreted as the product of cumulative paleosols. A 7 m by 11 m area was quarried with a jackhammer at intervals of 12.5 cm thickness for a 1.5 m thick stratigraphic section. The ichnoassemblage comprises four morphotypes (small, medium, large, and wide) assigned to Fictovichnus sciuttoi, of which three represent wasp (hymenopteran) cocoons while the fourth (wide) type potentially was produced by a coleopteran. Medium and small F. sciuttoi are dominant while large and wide Fictovichnus are less common and absent in some sample intervals. Other probable insect traces include partial perforations in cocoons (Tombownichnus), isolated burrows, and an enigmatic hemispherical trace. Material is representative of a depauperate Celliforma ichnofacies. Pervasive cocoons and other traces throughout the sequence suggest persistent soil conditions suitable for insect nesting and pupation, and suggest an absence of sediment pulses of sufficient thickness to prohibit thorough colonization. Peaks in pupation chamber abundance may reflect episodes of reduced sedimentation rates otherwise unseen in the absence of primary bedding structures. Well-drained and friable soil conditions favorable for insect nesting also may help explain the abundance of dinosaur nests and other vertebrate nesting events in associated strata as well as the presence of small terrestrial forms.
  • Thumbnail Image
    Item
    Ontogenetic changes in the long bone microstructure in the nine-banded armadillo (Dasypus novemcinctus)
    (2019-04) Heck, Christian Thomas; Varricchio, David J.; Gaudin, Timothy J.; Woodward, Holly N.; Horner, John R.
    Analysis of ontogenetic changes in long bone microstructure aid in vertebrate life history reconstructions. Specifically, osteohistological examination of common fauna can be used to infer growth strategies of biologically uncommon, threatened, or extinct vertebrates. Although nine-banded armadillo biology has been studied extensively, work on growth history is limited. Here we describe long bone microstructure in tibiae and femora of a limited ontogenetic series of nine- banded armadillos (Dasypus novemcinctus) to elucidate patterns of bone growth. The cortex of the smallest individual is composed of compacted coarse cancellous bone (CCCB) and woven tissue. Extensive cortical drift is driven by periosteal erosion and further compaction of trabeculae resulting in an increase in the amount of CCCB. The cortex of the largest specimens is primarily CCCB with thickened endosteal bone and thin outer cortices of lamellar and parallel-fibered tissue. The outer cortices of the largest individuals are interpreted as an external fundamental system (EFS) indicating a cessation of appositional bone growth corresponding to skeletal maturity (i.e. asymptotic or adult size). The EFS forms in femora prior to tibiae, indicating femoral growth rates begin decreasing earlier than tibial in D. novemcinctus. Growth trends in common fauna like the nine-banded armadillo can be used as a foundation for understanding life histories of related, but uncommon or extinct, species of cingulates.
  • Thumbnail Image
    Item
    Paleoecological implications of two closely associated egg types from the Upper Cretaceous St. Mary River Formation, Montana
    (2017-11) Jackson, Frankie D.; Varricchio, David J.
    Two closely associated egg types occur at the same locality in the Upper Cretaceous (Maastrichtian) St. Mary River Formation in north central Montana. These specimens represent the first fossil eggs described from this formation. At least fifteen small ovoid eggs or egg portions are scattered through a 25 cm interval of rock. Five significantly larger, round eggs overlie these smaller eggs and are in close proximity to one another on a single bedding plane. The best preserved egg of the smaller size measures 36 mm × 62 mm and exhibits the prismatic, two-layered eggshell structure of a theropod egg. The dispersed distribution and inconsistent angles of these small eggs likely resulted from disturbance by subsequent nesting activity and/or possibly nest predation. At least twelve additional small prismatic eggs also occur at this site. We assign the small eggs as a new oogenus and oospecies, Tetonoolithus nelsoni, within the Prismatoolithidae. The large round eggs measure 130 mm in diameter and the eggshell displays substantial diagenetic alteration. These eggs likely belonged to a hadrosaur due to their similarity in egg size, shape, and eggshell thickness to Maiasaura eggs from the stratigraphically lower Two Medicine Formation. Eggs at different stratigraphic levels at this site indicate that conditions favorable to both dinosaur species persisted for an extended period of time. However, determining whether these dinosaurs occupied the nesting site at the same or different years remains beyond the resolution of the rock record.
  • Thumbnail Image
    Item
    A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania)
    (2017-01) Demar, David G.; Conrad, Jack L.; Head, Jason J.; Varricchio, David J.; Wilson, Gregory P.
    Iguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g. Pleurodonta (basilisks, iguanas, and their relatives)) are poorly constrained, mainly due to a meagre Mesozoic-age fossil record. Here, we report on two nearly complete skeletons from the Late Cretaceous (Campanian) of North America that represent a new and relatively large-bodied and possibly herbivorous iguanomorph that inhabited a semi-arid environment. The new taxon exhibits a mosaic of anatomical features traditionally used in diagnosing Iguania and non-iguanian squamates (i.e. Scleroglossa; e.g. parietal foramen at the frontoparietal suture, astragalocalcaneal notch in the tibia, respectively). Our cladistic analysis of Squamata revealed a phylogenetic link between Campanian-age North American and East Asian stem iguanomorphs (i.e. the new taxon + Temujiniidae). These results and our evaluation of the squamate fossil record suggest that crown pleurodontans were restricted to the low-latitude Neotropics prior to their early Palaeogene first appearances in the mid-latitudes of North America.
  • Thumbnail Image
    Item
    Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode
    (2016-10) Varricchio, David J.; Jackson, Frankie D.
    The reproductive biology of living birds differs dramatically from that of other extant vertebrates. Although some attributes of modern avian reproduction had their origin within theropod dinosaurs like oviraptors and troodontids, even the most derived non-avian theropods lack key features of modern birds. We review the current knowledge of reproduction in Mesozoic birds and 3 lines of evidence that contribute to our understanding of the evolution of the modern avian reproductive mode: (1) efforts to define the ancestral reproductive condition on the basis of extant birds, (2) the fossil record of non-avian theropod dinosaurs, and (3) the fossil record of reproduction in primitive Mesozoic birds (e.g., Enantiornithes).The fossil evidence from Mesozoic birds and non-avian theropods suggests that reproduction passed through 5 stages from basal theropods to neornithines: (1) pre-maniraptoran theropods, (2) oviraptor-grade maniraptorans, (3) troodontid-grade paravians, (4) Enantiornithes, and (5) basal Neornithes. Major changes occurred incrementally in egg size, shape, and microstructure; in nest form; in incubation method; and in parental care. Reproduction in troodontid theropods concurs with this clade representing the sister taxon to birds. Reproduction in enantiornithine birds included sequential ovulation from a single ovary and oviduct, eggs planted upright within sediments, and incubation by a combination of sediment and attendant adult or eggs fully buried with superprecocial young. Incubation modes of derived non-avian theropods and enantiornithines may have favored paternal care.Significant changes between enantiornithines and neornithines include an additional increase in relative egg size and sediment-free incubation. The latter permitted greater adult-egg contact and likely more efficient incubation. Associated changes also included improved egg shape, egg rotation, and chalazae-the albumin chords that suspend the yolk and facilitate proper embryonic development during rotation. Neornithes are the only Mesozoic clade of Dinosauria to nest completely free of sediment, and this may have played a crucial role in their surviving the K-Pg mass extinction event.
  • Thumbnail Image
    Item
    Sedimentological Analyses of Eggshell Transport & Deposition: Implication and Application to Eggshell Taphonomy
    (2015-06) Imai, Takuya; Varricchio, David J.; Cahoon, Joel; Plymesser, Kathryn
    The interpretation of fossil eggshells can be problematic because eggshells may be transported by hydraulic flow in floodplains, making it difficult to interpret the reproductive behavior and ecology of parent animals. A series of flume studies was conducted to establish analytical techniques for assessing eggshell hydraulic transport in the fossil record. We investigated preferred eggshell orientation after transport, the relationship of flow competence with eggshell height and volume, and the size of clastic sediment expected to be associated with transported eggshells. Goose, emu, and ostrich eggshell fragments were released in a flume with decelerating flow. The transport of each eggshell was observed five times on each of four substrates (coarse sand, sparse gravel, dense gravel, and polyvinyl chloride). At eggshell deposition, eggshell orientation and flow depths were recorded. Critical bed shear stress for eggshell deposition was estimated based on the flow depth at the point of eggshell deposition, tested relative to eggshell height and volume, and used to estimate the size of hydraulically equivalent particles. The probability of concave-down orientation after transport was > 85% regardless of eggshell type or substrate. The bed shear stress at eggshell deposition reflected the eggshell height and volume. The estimated size of hydraulically equivalent particles was coarse sand or larger. A high proportion of concave-down eggshells in a fossil assemblage may indicate transport. In addition, eggshells may be sorted according to their height and volume. Coarse sand or larger particles observed in a matrix of fossil eggshells may suggest eggshell transport.
  • Thumbnail Image
    Item
    A theropod nesting trace with eggs from the upper cretaceous (Campanian) Two Medicine Formation of Montana
    (2015-05) Jackson, Frankie D.; Schaff, Rebecca J.; Varricchio, David J.; Schmitt, James G.
    A nesting trace preserved in alluvial floodplain deposits in the Upper Cretaceous Two Medicine Formation at the Willow Creek anticline in north-central Montana contains four crushed theropod eggs referable to the oospecies Continuoolithus canadensis. These eggs immediately overlie the lower surface of a 35-cm-long × 7-cm-thick, dark-green mudstone lens, surrounded by reddish-purple mudstone. The long axes of three eggs are parallel to one another and to the lower boundary of the lens, whereas the fourth egg lies at a 30° angle to the others. A thin, 1-cm-thick organic horizon overlies the eggs, suggesting they were buried with some vegetation. Geometric modeling of the slightly asymmetrical C. canadensis eggs yields a volume and mass of approximately 194 cm3 and 205 g for each egg. This method provides a more accurate estimation for the surface area than allometric equations that are based on modern bird eggs because of the elongate shape of many non-avian theropod eggs. Pore density and water vapor conductance (GH2O) calculated from one egg in the trace and five additional C. canadensis eggs from the Willow Creek anticline vary across three regions. High, moderate, and very low GH2O characterize the equatorial zone, blunt, and tapering poles, respectively. The average GH2O for all eggs exceeds that of an avian egg of similar mass by 3.9×, thus supporting sedimentologic evidence of substrate burial during incubation.
  • Thumbnail Image
    Item
    Taphonomy of Extant Desert Tortoise (Gopherus agasinii) and Loggerhead Sea Turtle (Carette caretta) Nesting Sites: Implications for Interpreting the Fossil Record
    (2015-05) Jackson, Frankie D.; Varricchio, David J.; Jackson, Robert A.; Walde, Andrew D.; Bishop, Gale A.
    Dinosaur reproductive biology is often inferred from the biology of extant taxa; however, taphonomic studies of modern nest sites have focused exclusively on avian, rather than reptilian species. We documented eight Agassiz's desert tortoise (Gopherus agassizii) nests and ten loggerhead sea turtle (Caretta caretta) nests. Gopherus agassizii excavated burrows up to 70 cm long and laid rigid-shelled eggs 10–12 cm below the burrow floor. The 19 cm × 12 cm depressions consisted of hard consolidated sand surrounded by a 3–4-cm-high rim and contained 2–5 hatched eggs in a single layer. These hatched egg bottoms represent ∼ 25% of the original egg, and five of 27 contained fully developed dead neonates. Desiccated membrane separated from the egg interior forming pockets that filled with eggshell and sand. Of 106 and 79 eggshell fragments in the hatched egg and surrounding sand, 48% and 23% occurred concave up, respectively. However, the combined numbers of eggshell fragments inside the eggs and in the immediately surrounding sand approximates the 60∶40 ratios at in situ avian nests. Therefore, this ratio may provide reliable evidence for hatching sites regardless of the incubation strategy employed by the adult. Caretta caretta nests differed from those of tortoises in their greater depth (∼ 50 cm) and occurrence in moist, cohesive sand. Clutches contained over 100 pliable-shelled eggs that tore and collapsed upon hatching, without brittle fracture. Failed eggs in two clutches showed five development stages, indicating that the deaths occurred over an extended time period. With the exception of predation, the G. agassizii and C. caretta nests showed no significant eggshell or hatched eggs above the egg chamber.
  • Thumbnail Image
    Item
    Reidentification of Avian Embryonic Remains from the Cretaceous of Mongolia
    (2015-06) Varricchio, David J.; Balanoff, Amy M.; Norell, Mark A.
    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.