Scholarly Work - Land Resources & Environmental Sciences
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8680
Browse
8 results
Search Results
Item Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica(Springer Science and Business Media LLC, 2024-08) Lee, Hanbyul; Hwang, Kyuin; Cho, Ahnna; Kim, Soyeon; Kim, Minkyung; Morgan-Kiss, Rachael; Priscu, John C.; Mo Kim, Kyung; Kim, Ok-SunBackground. Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney. Results. Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus. Conclusions. The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.Item McMurdo Dry Valley lake edge ‘moats’: the ecological intersection between terrestrial and aquatic polar desert habitats(Cambridge University Press, 2024-04) Stone, Michael S.; Devlin, Shawn P.; Hawes, Ian; Welch, Kathleen; Gooseff, Michael N.; Takacs-Vesbach, Cristina; Morgan-Kiss, Rachael; Adams, Bryon J.; Barrett, J. E.; Priscu, John C.; Doran, Peter T.Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change.Item Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes(American Association for the Advancement of Science, 2023-02) Ngugi, David Kamanda; Salcher, Michaela M.; Andrei, Adrian-Stefan; Ghai, Rohit; Klotz, Franziska; Chiriac, Maria-Cecilia; Ionescu, Danny; Büsing, Petra; Grossart, Hans-Peter; Xing, Peng; Priscu, John C.; Alymkulov, Salmor; Pester, MichaelAmmonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, “ Candidatus Nitrosopumilus limneticus,” is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.Item Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica(Springer Science and Business Media LLC, 2023-01) Davis, Christina L.; Venturelli, Ryan A.; Michaud, Alexander B.; Hawkings, Jon R.; Achberger, Amanda M.; Vick-Majors, Trista J.; Rosenheim, Brad E.; Dore, John E.; Steigmeyer, August; Skidmore, Mark L.; Barker, Joel D.; Benning, Liane G.; Siegfried, Matthew R.; Priscu, John C.; Christner, Brent C.; Barbante, Carlo; Bowling, Mark; Burnett, Justin; Campbell, Timothy; Collins, Billy; Dean, Cindy; Duling, Dennis; Fricker, Helen A.; Gagnon, Alan; Gardner, Christopher; Gibson, Dar; Gustafson, Chloe; Harwood, David; Kalin, Jonas; Kasic, Kathy; Kim, Ok-Sun; Krula, Edwin; Leventer, Amy; Li, Wei; Lyons, W. Berry; McGill, Patrick; McManis, James; McPike, David; Mironov, Anatoly; Patterson, Molly; Roberts, Graham; Rot, James; Trainor, Cathy; Tranter, Martyn; Winans, John; Zook, BobIce streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.Item Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations(Cambridge University Press, 2021-06) Priscu, John C.; Kalin, Jonas; Winans, John; Campbell, Timothy; Siegfried, Matthew R.; Skidmore, Mark; Dore, John E.; Leventer, Amy; Harwood, David M.; Duling, Dennis; Zook, Robert; Burnett, Justin; Gibson, Dar; Krula, Edward; Mironov, Anatoly; McManis, Jim; Roberts, Graham; Rosenheim, Brad E.; Christner, Brent C.; Kasic, Kathy; Fricker, Helen A.; Lyons, W. Berry; Barker, Joel; Bowling, Mark; Collings, Billy; Davis, Christina; Gagnon, Al; Gardner, Christopher; Gustafson, Chloe; Kim, Ok-Sun; Li, Wei; Michaud, Alex; Patterson, Molly O.; Tranter, Martyn; Venturelli, Ryan; Vick-Majors, Trista; Elsworth, CooperThe Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.Item Subsurface In Situ Detection of Microbes and Diverse Organic Matter Hotspots in the Greenland Ice Sheet(2020) Malaska, Michael J.; Bhartia, Rohit; Manatt, Kenneth S.; Priscu, John C.; Abbey, William J.; Mellerowicz, Boleslaw; Palmowski, Joseph; Paulsen, Gale L.; Zacny, Kris; Eshelman, Evan J.; D'Andrilli, JulianaWe used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter “hotspots” embedded in the ice. Our instrument revealed diverse spectral signatures. Most hotspots were <20 mm in diameter, clearly isolated from other hotspots, and distributed stochastically; there was no evidence of layering in the ice at the fine scales examined (100 μm per pixel). The spectral signatures were consistent with organic matter fluorescence from microbes, lignins, fused-ring aromatic molecules, including polycyclic aromatic hydrocarbons, and biologically derived materials such as fulvic acids. In situ detection of organic matter hotspots in ice prevents loss of spatial information and signal dilution when compared with traditional bulk analysis of ice core meltwaters. Our methodology could be useful for detecting microbial and organic hotspots in terrestrial icy environments and on future missions to the Ocean Worlds of our Solar System.Item Environmentally clean access to Antarctic subglacial aquatic environments(2020-10) Michaud, Alexander B.; Vick-Majors, Trista J.; Achberger, Amanda M.; Skidmore, Mark L.; Christner, Brent C.; Tranter, Martyn; Priscu, John C.Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets.Item Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment(2020-03) Vick‐Majors, Trista J.; Michaud, Alexander B.; Skidmore, Mark L.; Turetta, Clara; Barbante, Carlo; Christner, Brent C.; Dore, John E.; Christianson, Knut; Mitchell, Andrew C.; Achberger, Amanda M.; Mikucki, Jill A.; Priscu, John C.Although subglacial aquatic environments are widespread beneath the Antarctic ice sheet, subglacial biogeochemistry is not well understood, and the contribution of subglacial water to coastal ocean carbon and nutrient cycling remains poorly constrained. The Whillans Subglacial Lake (SLW) ecosystem is upstream from West Antarctica's Gould‐Siple Coast ~800 m beneath the surface of the Whillans Ice Stream. SLW hosts an active microbial ecosystem and is part of an active hydrological system that drains into the marine cavity beneath the adjacent Ross Ice Shelf. Here we examine sources and sinks for organic matter in the lake and estimate the freshwater carbon and nutrient delivery from discharges into the coastal embayment. Fluorescence‐based characterization of dissolved organic matter revealed microbially driven differences between sediment pore waters and lake water, with an increasing contribution from relict humic‐like dissolved organic matter with sediment depth. Mass balance calculations indicated that the pool of dissolved organic carbon in the SLW water column could be produced in 4.8 to 11.9 yr, which is a time frame similar to that of the lakes’ fill‐drain cycle. Based on these estimates, subglacial lake water discharged at the Siple Coast could supply an average of 5,400% more than the heterotrophic carbon demand within Siple Coast embayments (6.5% for the entire Ross Ice Shelf cavity). Our results suggest that subglacial discharge represents a heretofore unappreciated source of microbially processed dissolved organic carbon and other nutrients to the Southern Ocean.