Scholarly Work - Land Resources & Environmental Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8680

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)
    (2014-07) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, R. F.; Schuster, Stephan C.; Steinke, L.; Bryant, Donald A.
    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.
  • Thumbnail Image
    Item
    Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)
    (2014-09) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Schuster, Stephan C.; Bryant, Donald A.; Ward, David M.
    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.
  • Thumbnail Image
    Item
    Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in Bacteria
    (2013-12) Rodionova, I. A.; Li, X.; Thiel, Vera; Stolyar, S.; Stanton, K.; Frederickson, J. K.; Bryant, Donald A.; Osterman, A. L.; Best, A. A.; Rodionov, D. A.
    L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.
  • Thumbnail Image
    Item
    Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a
    (2014-01) Stolyar, S.; Liu, Zhenhua; Thiel, Vera; Tomsho, Lynn P.; Pinel, N.; Nelson, William C.; Lindemann, S.; Romine, Margaret F.; Haruta, S.; Schuster, Stephan C.; Bryant, Donald A.; Frederickson, J. K.
    The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.
  • Thumbnail Image
    Item
    Draft genome sequence of a sulfide-oxidizing, autotrophic filamentous anoxygenic phototrophic bacterium, Chloroflexus sp. strain MS-G (Chloroflexi)
    (American Society for Microbiology, 2014-09) Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.; Bryant, Donald A.
    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.