Scholarly Work - Land Resources & Environmental Sciences
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8680
Browse
3 results
Search Results
Item Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions(MDPI, 2022-06) Seipel, Tim; Ishaq, Suzanne L.; Larson, Christian; Menalled, Fabian D.Understanding the impact of biological and environmental stressors on cropping systems is essential to secure the long-term sustainability of agricultural production in the face of unprecedented climatic conditions. This study evaluated the effect of increased soil temperature and reduced moisture across three contrasting cropping systems: a no-till chemically managed system, a tilled organic system, and an organic system that used grazing to reduce tillage intensity. Results showed that while cropping system characteristics represent a major driver in structuring weed communities, the short-term impact of changes in temperature and moisture conditions appear to be more subtle. Weed community responses to temperature and moisture manipulations differed across variables: while biomass, species richness, and Simpson’s diversity estimates were not affected by temperature and moisture conditions, we observed a minor but significant shift in weed community composition. Higher weed biomass was recorded in the grazed/reduced-till organic system compared with the tilled-organic and no-till chemically managed systems. Weed communities in the two organic systems were more diverse than in the no-till conventional system, but an increased abundance in perennial species such as Cirsium arvense and Taraxacum officinale in the grazed/reduced-till organic system could hinder the adoption of integrated crop-livestock production tactics. Species composition of the no-till conventional weed communities showed low species richness and diversity, and was encompassed in the grazed/reduced-till organic communities. The weed communities of the no-till conventional and grazed/reduced-till organic systems were distinct from the tilled organic community, underscoring the effect that tillage has on the assembly of weed communities. Results highlight the importance of understanding the ecological mechanisms structuring weed communities, and integrating multiple tactics to reduce off-farm inputs while managing weeds.Item Predicted climate conditions and cover crop composition modify weed communities in semiarid agroecosystems(Wiley, 2021-10) DuPre, Mary E.; Seipel, Tim; Bourgault, Maryse; Boss, Darin L.; Menalled, Fabian D.The US Northern Great Plains is one of the largest expanses of small grain agriculture, but excessive reliance on off-farms inputs and predicted warmer and drier conditions hinder its agricultural sustainability. In this region, the use of cover crops represents a promising approach to increase biodiversity and reduce external inputs; however little information exists about how cover crop mixture composition, predicted climate and management systems could impact the performance of cover crops and weed communities. In the 4th cycle of a cover crop-wheat rotation, we experimentally increased temperature and reduced moisture as expected to occur with climate change, and assessed impacts on the presence and composition of cover crop mixtures and termination methods on weed communities. Under ambient climate conditions, mean total cover crop biomass was 43%–53% greater in a five species early-season cover crop mixture compared with a seven species mid-season mixture, and differences were less pronounced in warmer and drier conditions (19%–24%). We observed a total of 18 weed species; 13 occurring in the early-season mixture, 13 in the mid-season mixtures and 14 in the fallow treatments. Weed species richness and diversity was lower in warmer and drier treatments, and we observed a shift in weed communities due to the presence and composition of cover crop mixtures as well as climate manipulations. Overall, results suggest that adoption of cover crop mixtures in semiarid agroecosystems requires jointly addressing weed management and soil moisture retention goals, a challenge further complicated by predicted climate conditions.Item Farming system effects on biologically mediated plant–soil feedbacks(Cambridge University Press, 2020-01) Menalled, Uriel D.; Seipel, Tim; Menalled, Fabian D.Cropping system characteristics such as tillage intensity, crop identity, crop-livestock integration and the application of off-farm synthetic inputs influence weed abundance, plant community composition and crop-weed competition. The resulting plant community, in turn, has species-specific effects on soil microbial communities which can impact the growth and competitive ability of subsequent plants, completing a plant–soil feedback (PSF) loop. Farming systems that minimize the negative impacts of PSFs on subsequent crop growth can increase the sustainability of the farming enterprise. This study sought to assess the individual and combined impact of the cropping system (certified organic-grazed, certified organic till and conventional no-till) and crop sequence [pairwise rotations with safflower (Carthamus tinctorius), yellow sweet clover (Melilotus officinalis) and winter wheat (Triticum aestivum)] on the PSF magnitude and direction. All cropping systems followed the same 5-year rotation and had completed one full rotation before soil was sampled. In a greenhouse setting, a sterile soil mix was inoculated with field soil collected from all systems and three crops. The PSF study consisted of two stages (conditioning and response phases) that mimicked the rotation stages occurring in the field. PSFs were calculated by comparing the biomass of the response phase plants grown in inoculated and uninoculated soils. The farm management system affected PSFs, inferring that tillage reduction can encourage more positive PSFs. Crop sequence did not affect PSF but interacted strongly with the farm system. As such, the effects of the farming system on PSFs are best illustrated when taken into account with the identity of the previous and current crops of a cropping sequence.