Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
2 results
Search Results
Item Optimized High Throughput Ascochyta Blight Screening Protocols and Immunity to A. pisi in Pea(MDPI AG, 2023-03) Annan, Emmanuel N.; Nyamesorto, Bernard; Yan, Qing; McPhee, Kevin; Huang, LiAscochyta blight (AB) is a destructive disease of the field pea (Pisum sativum L.) caused by necrotrophic fungal pathogens known as the AB-disease complex. To identify resistant individuals to assist AB resistance breeding, low-cost, high throughput, and reliable protocols for AB screening are needed. We tested and optimized three protocols to determine the optimum type of pathogen inoculum, the optimal development stage for host inoculation, and the timing of inoculation for detached-leaf assays. We found that different plant development stages do not affect AB infection type on peas, but the timing of inoculation affects the infection type of detached leaves due to wound-induced host defense response. After screening nine pea cultivars, we discovered that cultivar Fallon was immune to A. pisi but not to A. pinodes or the mixture of the two species. Our findings suggest that AB screening can be done with any of the three protocols. A whole-plant inoculation assay is necessary for identifying resistance to stem/node infection. Pathogen inoculation must be completed within 1.5 h post-detachment to avoid false positives of resistance for detach-leaf assays. It is essential to use a purified single-species inoculum for resistant resource screenings to identify the host resistance to each single species.Item A transcriptomic-guided strategy used in identification of a wheat rust pathogen target and modification of the target enhanced host resistance to rust pathogens(Frontiers Media SA, 2022-09) Nyamesorto, Bernard; Zhang, Hongtao; Rouse, Matthew; Wang, Meinan; Chen, Xianming; Huang, LiTranscriptional reprogramming is an essential feature of plant immunity and is governed by transcription factors (TFs) and co-regulatory proteins associated with discrete transcriptional complexes. On the other hand, effector proteins from pathogens have been shown to hijack these vast repertoires of plant TFs. Our current knowledge of host genes' role (including TFs) involved in pathogen colonization is based on research employing model plants such as Arabidopsis and rice with minimal efforts in wheat rust interactions. In this study, we begun the research by identifying wheat genes that benefit rust pathogens during infection and editing those genes to provide wheat with passive resistance to rust. We identified the wheat MYC4 transcription factor (TF) located on chromosome 1B (TaMYC4-1B) as a rust pathogen target. The gene was upregulated only in susceptible lines in the presence of the pathogens. Down-regulation of TaMYC4-1B using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in the susceptible cultivar Chinese Spring enhanced its resistance to the stem rust pathogen. Knockout of the TaMYC4-1BL in Cadenza rendered new resistance to races of stem, leaf, and stripe rust pathogens. We developed new germplasm in wheat via modifications of the wheat TaMYC4−1BL transcription factor.