Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
4 results
Search Results
Item Antixenosis, Antibiosis, and Potential Yield Compensatory Response in Barley Cultivars Exposed to Wheat Stem Sawfly (Hymenoptera: Cephidae) under Field Conditions(2020-08) Achhami, Buddhi B.; Reddy, Gadi V. P.; Sherman, Jamie D.; Peterson, Robert K. D.; Weaver, David K.Wheat stem sawfly, Cephus cinctus Norton, is an economically serious pest of cereals grown in North America. Barley cultivars were previously planted as resistant crops in rotations to manage C. cinctus, but due to increasing levels of injury to this crop, this is no longer a valid management tactic in Montana. Therefore, we aimed to understand antixenosis (behavioral preference), antibiosis (mortality), and potential yield compensation (increased productivity in response to stem injuries) in barley exposed to C. cinctus. We examined these traits in eight barley cultivars. Antixenosis was assessed by counting number of eggs per stem and antibiosis was assessed by counting infested stems, dead larvae, and stems cut by mature larvae. Potential yield compensation was evaluated by comparing grain yield from three categories of stem infestation: 1) uninfested, 2) infested with dead larva, and 3) infested cut by mature larva at crop maturity. We found the greatest number of eggs per infested stem (1.80 ± 0.04), the highest proportion of infested stems (0.63 ± 0.01), and the highest proportion of cut stems (0.33 ± 0.01) in ‘Hockett’. Seven out of eight cultivars had greater grain weight for infested stems than for uninfested stems. These cultivars may have compensatory responses to larval feeding injury. Overall, these barley cultivars contain varying levels of antixenosis, antibiosis, and differing levels of yield compensation. Our results provide foundational knowledge on barley traits that will provide a framework to further develop C. cinctus resistant or tolerant barley cultivars.Item Multiple decrement life tables of Cephus cinctus Norton (Hymenoptera: Cephidae) across a set of barley cultivars: The importance of plant defense versus cannibalism(2020-09) Achhami, Buddhi B.; Peterson, Robert K. D.; Sherman, Jamie D.; Reddy, Gadi V. P.; Weaver, David K.Accurately estimating cause-specific mortality for immature insect herbivores is usually difficult. The insects are exposed to abiotic and biotic mortality factors, causing cadavers to simply disappear before cause of mortality can be recorded. Also, insect herbivores are often highly mobile on hosts, making it difficult to follow patterns for individuals through time. In contrast, the wheat stem sawfly, Cephus cinctus Norton, spends its entire egg, larval, and pupal period inside a host stem. Therefore, with periodic sampling stage-specific causes of mortality can be ascertained. Consequently, we examined C. cinctus mortality in eight barley, Hordeum vulgare L., cultivars in two locations in Montana from 2016 to 2018 by collecting stem samples from stem elongation to crop maturity at weekly intervals, and collecting overwintered barley stubs the following spring and summer from the same plots. If larvae were present, we examined larval status—dead or alive—and categorized dead individuals into one of 5 mortality categories: plant defense, cannibalism, parasitism, pathogens, and unknown factors. We used multiple decrement life tables to estimate cause-specific mortality and irreplaceable mortality (the proportion of mortality from a given cause that cannot be replaced by other causes of mortality). Plant defense (antibiosis) caused 85.7 ± 3.6%, cannibalism (governed by antixenosis) caused 70.1 ± 7.6%, parasitism caused 13.8 ± 5.9%, unknown factors caused 38.5 ± 7.6%, and pathogens caused 14.7 ± 8.5% mortality in the presence of all causes of mortality. Similarly, irreplaceable mortality due to plant defense was 22.3 ± 6.4%, cannibalism was 29.1± 4.2%, unknown factors was 6.2 ± 1.8%, pathogens was 0.9 ± 0.5%, and parasitism was 1. 5 ± 0. 6%. Antibiosis traits primarily killed newly emerged larvae, while other traits supported more favorable oviposition decisions by females, increasing mortality by obligate cannibalism. Our results suggest that breeding barley for resistance to C. cinctus targeting both categories of traits (antibiosis and antixenosis) is a highly valuable tactic for management of this important pest.Item Acute Toxicity of Permethrin, Deltamethrin, and Etofenprox to the Alfalfa Leafcutting Bee(2018-05) Piccolomini, Alyssa M.; Whiten, Shavonn R.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.Current regulatory requirements for insecticide toxicity to nontarget insects focus on the honey bee, Apis mellifera (L.; Hymenoptera: Apidae), but this species cannot represent all insect pollinator species in terms of response to insecticides. Therefore, we characterized the toxicity of pyrethroid insecticides used for adult mosquito management (permethrin, deltamethrin, and etofenprox) on a nontarget insect, the adult alfalfa leafcutting bee, Megachile rotundata (F.; Hymenoptera: Megachilidae) in two separate studies. In the first study, the doses causing 50 and 90% mortality (LD50 and LD90, respectively) were used as endpoints and 2-d-old adult females were exposed to eight concentrations ranging from 0.0075 to 0.076 μg/bee for permethrin and etofenprox, and 0.0013–0.0075 μg/bee for deltamethrin. For the second study, respiration rates of female M. rotundata were also recorded for 2 h after bees were dosed at the LD50 values to give an indication of stress response. Results indicated a relatively similar LD50 for permethrin and etofenprox, 0.057 and 0.051 μg/bee, respectively, and a more toxic response, 0.0016 μg/bee for deltamethrin. Comparatively, female A. mellifera workers have a LD50 value of 0.024 μg/bee for permethrin and 0.015 μg/bee for etofenprox indicating that female M. rotundata are less susceptible to topical doses of these insecticides, except for deltamethrin, where both A. mellifera and M. rotundata have an identical LD50 of 0.0016 μg/bee. Respiration rates comparing each active ingredient to control groups, as well as rates between each active ingredient, were statistically different (P < 0.0001). The addition of these results to existing information on A. mellifera may provide more insights on how other economically beneficial and nontarget bees respond to pyrethroids.Item Effects of an Ultra-low-Volume Application of Etofenprox for Mosquito Management on Megachile rotundata (Hymenoptera: Megachilidae) Larvae and Adults in an Agricultural Setting(2018-02) Piccolomini, Alyssa M.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.The alfalfa leafcutting bee, Megachile rotundata F. (Hymenoptera: Megachilidae), is one of the most intensively managed solitary bees and greatly contributes to alfalfa production in both the United States and Canada. Although production of certain commodities, especially alfalfa seed, has become increasingly dependent on this species\' pollination proficiency, little information is known about how M. rotundata is affected by insecticide exposure. To better understand the risk posed to M. rotundata by the increasing use of insecticides to manage mosquitoes, we conducted field experiments that directly exposed M. rotundata nests, adults, and larvae to a pyrethroid insecticide via a ground-based ultra-low-volume (ULV) aerosol generator. We directly targeted nest shelters with Zenivex E20 (etofenprox) at a half-maximum rate of 0.0032 kg/ha at dusk and then observed larval mortality, adult mortality, and the total number of completed nests for both the treated and control groups. There was no significant difference in the proportion of dead (P = 0.99) and alive (P = 0.23) larvae when the control group was compared with the treated group. We also did not observe a significant difference in the number of emerged adults reared from the treated shelters (P = 0.22 and 0.50 for females and males, respectively), and the number of completed cells after exposure to the insecticides continued to increase throughout the summer, indicating that provisioning adults were not affected by the insecticide treatment. The results from this study suggest that the amount of insecticide reaching nest shelters may not be sufficient to cause significant mortality.