Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
2 results
Search Results
Item Creating yellow seed Camelina sativa with enhanced oil accumulation by CRISPR-mediated disruption of Transparent Testa 8(Wiley, 2024-06) Cai, Yuanheng; Liang, Yuanxue; Shi, Hai; Cui, Jodie; Prakash, Shreyas; Zhang, Jianhui; Anaokar, Sanket; Chai, Jin; Schwender, Jorg; Lu, Chaofu; Yu, Xiao-Hong; Shanklin, JohnCamelina (Camelina sativa L.), a hexaploid member of the Brassicaceae family, is an emerging oilseed crop being developed to meet the increasing demand for plant oils as biofuel feedstocks. In other Brassicas, high oil content can be associated with a yellow seed phenotype, which is unknown for camelina. We sought to create yellow seed camelina using CRISPR/Cas9 technology to disrupt its Transparent Testa 8 (TT8) transcription factor genes and to evaluate the resulting seed phenotype. We identified three TT8 genes, one in each of the three camelina subgenomes, and obtained independent CsTT8 lines containing frameshift edits. Disruption of TT8 caused seed coat colour to change from brown to yellow reflecting their reduced flavonoid accumulation of up to 44%, and the loss of a well-organized seed coat mucilage layer. Transcriptomic analysis of CsTT8-edited seeds revealed significantly increased expression of the lipid-related transcription factors LEC1, LEC2, FUS3, and WRI1 and their downstream fatty acid synthesis-related targets. These changes caused metabolic remodelling with increased fatty acid synthesis rates and corresponding increases in total fatty acid (TFA) accumulation from 32.4% to as high as 38.0% of seed weight, and TAG yield by more than 21% without significant changes in starch or protein levels compared to parental line. These data highlight the effectiveness of CRISPR in creating novel enhanced-oil germplasm in camelina. The resulting lines may directly contribute to future net-zero carbon energy production or be combined with other traits to produce desired lipid-derived bioproducts at high yields.Item Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN(Frontiers Media SA, 2023-08) Fu, Benzhong; Yan, QingParaburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.