Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
9 results
Search Results
Item Virus-like Particle-Induced Protection against MRSA Pneumonia Is Dependent on IL-13 and Enhancement of Phagocyte Function(2012-07) Rynda-Apple, Agnieszka; Dobrinen, Erin; McAlpine, Mark; Read, Amanda; Harmsen, Ann L.; Richert, Laura E.; Calverley, Matthew; Pallister, Kyler; Voyich, Jovanka M.; Wiley, James A.; Johnson, Ben; Young, Mark J.; Douglas, Trevor; Harmsen, Allen G.The importance of the priming of the lung environment by past infections is being increasingly recognized. Exposure to any given antigen can either improve or worsen the outcome of subsequent lung infections, depending on the immunological history of the host. Thus, an ability to impart transient alterations in the lung environment in anticipation of future insult could provide an important novel therapy for emerging infectious diseases. In this study, we show that nasal administration of virus-like particles (VLPs) before, or immediately after, lethal challenge with methicillin-resistant Staphylococcus aureus (MRSA) of mice i) ensures complete recovery from lung infection and near absolute clearance of bacteria within 12 hours of challenge, ii) reduces host response-induced lung tissue damage, iii) promotes recruitment and efficient bacterial clearance by neutrophils and CD11c+ cells, and iv) protects macrophages from MRSA-induced necrosis. VLP-mediated protection against MRSA relied on innate immunity. Complete recovery occurred in VLP-dosed mice with severe combined immunodeficiency, but not in wild-type mice depleted of either Ly6G+ or CD11c+ cells. Early IL-13 production associated with VLP-induced CD11c+ cells was essential for VLP-induced protection. These results indicate that VLP-induced alteration of the lung environment protects the host from lethal MRSA pneumonia by enhancing phagocyte recruitment and killing and by reducing inflammation-induced tissue damage via IL-13–dependent mechanisms.Item Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses(2009-09) Wiley, James A.; Richert, Laura E.; Swain, Steve D.; Harmsen, Ann L.; Barnard, Dale L.; Randall, Troy D.; Jutila, Mark A.; Douglas, Trevor; Broomell, Chris; Young, Mark J.; Harmsen, Allen G.Background Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage. Methodology/Principal Findings Mice pre-treated with PCN, independent of any specific viral antigens, were protected against both sub-lethal and lethal doses of two different influenza viruses, a mouse-adapted SARS-coronavirus, or mouse pneumovirus. Treatment with PCN significantly increased survival and was marked by enhanced viral clearance, accelerated induction of viral-specific antibody production, and significant decreases in morbidity and lung damage. The enhanced protection appears to be dependent upon the prior development of inducible bronchus-associated lymphoid tissue (iBALT) in the lung in response to the PCN treatment and to be mediated through CD4+ T cell and B cell dependent mechanisms. Conclusions/Significance The immunoprophylactic strategy described utilizes an infection-independent induction of naturally occurring iBALT prior to infection by a pulmonary viral pathogen. This strategy non-specifically enhances primary immunity to respiratory viruses and is not restricted by the antigen specificities inherent in typical vaccination strategies. PCN treatment is asymptomatic in its application and importantly, ameliorates the damaging inflammation normally associated with the recruitment of immune responses into the lung.Item Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress(2009-09) Maaty, Walid S.; Wiedenheft, Blake A.; Tarlykov, Pavel V.; Schaff, Nathan; Heinemann, Joshua V.; Robison-Cox, James; Dougherty, Amanda; Blum, Paul; Lawrence, C. Martin; Douglas, Trevor; Young, Mark J.; Bothner, BrianTo avoid molecular damage of biomolecules due to oxidation, all cells have evolved constitutive and responsive systems to mitigate and repair chemical modifications. Archaea have adapted to some of the most extreme environments known to support life, including highly oxidizing conditions. However, in comparison to bacteria and eukaryotes, relatively little is known about the biology and biochemistry of archaea in response to changing conditions and repair of oxidative damage. In this study transcriptome, proteome, and chemical reactivity analyses of hydrogen peroxide (H2O2) induced oxidative stress in Sulfolobus solfataricus (P2) were conducted. Microarray analysis of mRNA expression showed that 102 transcripts were regulated by at least 1.5 fold, 30 minutes after exposure to 30 µM H2O2. Parallel proteomic analyses using two-dimensional differential gel electrophoresis (2D-DIGE), monitored more than 800 proteins 30 and 105 minutes after exposure and found that 18 had significant changes in abundance. A recently characterized ferritin-like antioxidant protein, DPSL, was the most highly regulated species of mRNA and protein, in addition to being post-translationally modified. As expected, a number of antioxidant related mRNAs and proteins were differentially regulated. Three of these, DPSL, superoxide dismutase, and peroxiredoxin were shown to interact and likely form a novel supramolecular complex for mitigating oxidative damage. A scheme for the ability of this complex to perform multi-step reactions is presented. Despite the central role played by DPSL, cells maintained a lower level of protection after disruption of the dpsl gene, indicating a level of redundancy in the oxidative stress pathways of S. solfataricus. This work provides the first “omics” scale assessment of the oxidative stress response for an archeal organism and together with a network analysis using data from previous studies on bacteria and eukaryotes reveals evolutionarily conserved pathways where complex and overlapping defense mechanisms protect against oxygen toxicity.Item A large-scale multiomics analysis of wheat stem solidness and the wheat stem sawfly feeding response, and syntenic associations in barley, Brachypodium, and rice(2018-02) Biyiklioglu, Sezgi; Alptekin, Burcu; Akpinar, B. Ani; Varella, Andrea C.; Hofland, Megan L.; Weaver, David K.; Bothner, Brian; Budak, HikmetThe wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), is an important pest of wheat and other cereals, threatening the quality and quantity of grain production. WSS larvae feed and develop inside the stem where they are protected from the external environment; therefore, pest management strategies primarily rely on host plant resistance. A major locus on the long arm of wheat chromosome 3B underlies most of the variation in stem solidness; however, the impact of stem solidness on WSS feeding has not been completely characterized. Here, we used a multiomics approach to examine the response to WSS in both solid- and semi-solid-stemmed wheat varieties. The combined transcriptomic, proteomic, and metabolomic data revealed that two important molecular pathways, phenylpropanoid and phosphate pentose, are involved in plant defense against WSS. We also detected a general downregulation of several key defense transcripts, including those encoding secondary metabolites such as DIMBOA, tricetin, and lignin, which suggested that the WSS larva might interfere with plant defense. We comparatively analyzed the stem solidness genomic region known to be associated with WSS tolerance in wild emmer, durum, and bread wheats, and described syntenic regions in the close relatives barley, Brachypodium, and rice. Additionally, microRNAs identified from the same genomic region revealed potential regulatory pathways associated with the WSS response. We propose a model outlining the molecular responses of the WSS-wheat interactions. These findings provide insight into the link between stem solidness and WSS feeding at the molecular level.Item Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation(2018-01) Burns, Erin E.; Keith, Barbara K.; Mohammed, Refai Y.; Bothner, Brian; Dyer, William E.Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.Item Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.(2017-06) Burns, Erin E.; Keith, Barbara K.; Refai, Mohammed Y.; Bothner, Brian; Dyer, William E.Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes.Item Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L.(2017-08) Keith, Barbara K.; Burns, Erin E.; Bothner, Brian; Carey, Charles C.; Mazurie, Aurélien J.; Hilmer, Jonathan K.; Biyiklioglu, Sezgi; Budak, Hikmet; Dyer, William E.BACKGROUND: Intensive use of herbicides has led to the evolution two multiple herbicide-resistant (MHR) Avena fatua (wild oat) populations in Montana that are resistant to members of all selective herbicide families available for A. fatua control in U.S. small grain crops. We used transcriptome and proteome surveys to compare constitutive changes in MHR and herbicide susceptible (HS) plants associated with non-target site resistance (NTSR). RESULTS: Compared to HS plants, MHR plants contained constitutively elevated levels of differentially expressed genes (DEGs) with functions in xenobiotic catabolism, stress response, redox maintenance, and transcriptional regulation that are similar to abiotic-stress tolerant phenotypes. Proteome comparisons identified similarly elevated proteins including biosynthetic and multifunctional enzymes in MHR plants. Of 25 DEGs validated by RT-qPCR assay, differential regulation of 21 co-segregated with flucarbazone-sodium herbicide resistance in F3 families, and a subset of 10 of these were induced or repressed in herbicide-treated HS plants. CONCLUSIONS: Although the individual and collective contributions of these DEGs and proteins to MHR remain to be determined, our results support the idea that intensive herbicide use has selected for MHR populations with altered, constitutively-regulated patterns of gene expression that are similar to those in abiotic stress-tolerant plants. This article is protected by copyright. All rights reserved.Item Resolution of volatile fuel compound profiles from Ascocoryne sarcoides: A comparison by proton transfer reaction-mass spectrometry and solid phase microextraction gas chromatography mass spectrometry(2012-04) Mallette, Natasha D.; Knighton, W. Berk; Strobel, Gary A.; Carlson, Ross P.; Peyton, Brent M.Volatile hydrocarbon production by Ascocoryne sacroides was studied over its growth cycle. Gas-phase compounds were measured continuously with a proton transfer reaction-mass spectrometry (PTR-MS) and at distinct time points with gas chromatography-mass spectrometry (GC-MS) using head space solid phase microextraction (SPME). The PTR-MS ion signal permitted temporal resolution of the volatile production while the SPME results revealed distinct compound identities. The quantitative PTR-MS results showed the volatile production was dominated by ethanol and acetaldehyde, while the concentration of the remainder of volatiles consistently reached 2,000 ppbv. The measurement of alcohols from the fungal culture by the two techniques correlated well. Notable compounds of fuel interest included nonanal, 1-octen-3-ol, 1-butanol, 3-methyl- and benzaldehyde. Abiotic comparison of the two techniques demonstrated SPME fiber bias toward higher molecular weight compounds, making quantitative efforts with SPME impractical. Together, PTR-MS and SPME GC-MS were shown as valuable tools for characterizing volatile fuel compound production from microbiological sources.Item Aggregatibacter actinomycetemcomitans biofilm killing by a targeted ciprofloxacin prodrug(2013-09) Reeves, Benjamin D.; Young, Mark J.; Grieco, Paul A.; Suci, Peter A.A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ∼80% was in the range of ng cm−2 of colonized area (mean biofilm density 2.33 × 109 cells cm−2). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed.