Scholarly Work - Mechanical & Industrial Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8878
Browse
Item Biochar as a Renewable Substitute for Carbon Black in Lithium-Ion Battery Electrodes(American Chemical Society, 2022-09) Kane, Seth; Storer, Aksiin; Xu, Wei; Ryan, Cecily; Stadie, Nicholas P.Lignin-derived biochar was prepared and characterized towards potential applications as a conductive electrode additive and active lithium host material within lithium-ion batteries (LIBs). This biochar was specifically selected for its high electrical conductivity, which is comparable to that of common conductive carbon black standards (e.g., Super P). Owing to its high electrical conductivity, this biochar serves as an effective conductive additive within electrodes comprised of graphite as the active material, demonstrating slightly improved cell efficiency and rate capability over electrodes using carbon black as the additive. Despite its effectiveness as a conductive additive in LIB anodes, preliminary results show that the biochar developed in this work is not suitable as a direct replacement for carbon black as a conductive additive in LiFePO4 (LFP) cathodes. This latter insufficiency may be due to differences in particle 2 geometry between biochar and carbon black; further optimization is necessary to permit the application of biochar as a general-purpose conductive additive in LIBs. Nevertheless, these investigations combined with an assessment of greenhouse gas emissions from biochar production show that replacing carbon black with biochar can be an effective method to improve the sustainability of LIBs.Item Role of sodium sulfate in electrical conductivity and structure of lignin-derived carbons(Elsevier BV, 2024-08) Kane, Seth; Hodge, David B.; Saulnier, Brian; Bécsy-Jakab, Villő Enikő; Dülger, Dilara N.; Ryan, CecilyLignin is a promising renewable alternative to fossil fuels for producing carbon materials such as carbon fibers, activated carbons, or carbon black. Despite extensive research, lignin-derived carbon materials show limited graphitization relative to comparable petroleum-derived carbons. Further, lignin-derived carbons show high variation in graphitization and electrical conductivity depending on the source of the lignin. Herein, nine lignins, derived from various feedstocks and isolation procedures, are pyrolyzed to produce biochar at 1100∘C. These lignins have a range of chemical compositions, carbon structures, and particle sizes. As a result, the pyrolysis behavior of these lignins varies, with powdered, clumped powder, and “foam” biochar morphologies resulting from finely powdered lignin. The produced biochars vary widely in both electrical conductivity, from 0.19 to 19 S/cm, and in-plane graphitic crystallite size, from 3.4 to 41.2Å. A significant decrease in electrical conductivity is identified when Na2SO4 is removed from lignin, accompanied by an increase in graphitic crystallite size. Based on this finding, a quadratic relationship between biochar graphitic crystallite aspect ratio and electrical conductivity is proposed that builds on established quasi-percolation models for biochar electrical conductivity.