Scholarly Work - Mechanical & Industrial Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8878

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Heat conduction simulation of chondrocyte-embedded agarose gels suggests negligible impact of viscoelastic dissipation on temperature change
    (Elsevier BV, 2024-09) Myers, Erik; Piazza, Molly; Owkes, Mark; June, Ronald K.
    Agarose is commonly used for 3D cell culture and to mimic the stiffness of the pericellular matrix of articular chondrocytes. Although it is known that both temperature and mechanical stimulation affect the metabolism of chondrocytes, little is known about the thermal properties of agarose hydrogels. Thermal properties of agarose are needed to analyze potential heat production by chondrocytes induced by various experimental stimuli (carbon source, cyclical compression, etc). Utilizing ASTM C177, a custom-built thermal conductivity measuring device was constructed and used to calculate the thermal conductivity of 4.5 % low gelling temperature agarose hydrogels. Additionally, Differential Scanning Calorimetry was used to calculate the specific heat capacity of the agarose hydrogels. Testing of chondrocyte-embedded agarose hydrogels commonly occurs in Phosphate-Buffered Saline (PBS), and thermal analysis requires the free convection coefficient of PBS. This was calculated using a 2D heat conduction simulation within MATLAB in tandem with experimental data collected for known boundary and initial conditions. The specific heat capacity and thermal conductivity of 4.5 % agarose hydrogels was calculated to be 2.85 J/g°C and 0.121 W/mK, respectively. The free convection coefficient of PBS was calculated to be 1000.1 W/m2K. The values of specific heat capacity and thermal conductivity for agarose are similar to the reported values for articular cartilage, which are 3.20 J/g°C and 0.21 W/mK (Moghadam, et al. 2014). These data show that cyclical loading of hydrogel samples with these thermal properties will result in negligible temperature increases. This suggests that in addition to 4.5 % agarose hydrogels mimicking the physiological stiffness of the cartilage PCM, they can also mimic the thermal properties of articular cartilage for in vitro studies.
  • Thumbnail Image
    Item
    Unraveling sex-specific risks of knee osteoarthritis before menopause: Do sex differences start early in life?
    (Elsevier BV, 2024-05) Hernandez, Paula A.; Churchill Bradford, John; Brahmachary, Priyanka; Ulman, Sophia; Robinson, Jennifer L.; June, Ronald K.; Cucchiarini, Magali
    Objective. Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females. Design. We compiled clinical data from multiple tissues within the knee joint—since OA is a whole joint disorder—aiming to reveal relevant factors behind the sex differences from different perspectives. Results. The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures. Conclusions. We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.