Scholarly Work - Mechanical & Industrial Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8878
Browse
Search Results
Item Physical and chemical mechanisms that influence the electrical conductivity of lignin-derived biochar(2021-10) Kane, Seth; Ulrich, Rachel; Harrington, Abigail; Stadie, Nicholas P.; Ryan, Cecily A.Lignin-derived biochar is a promising, sustainable alternative to petroleum-based carbon powders (e.g., carbon black) for polymer composite and energy storage applications. Prior studies of these biochars demonstrate that high electrical conductivity and good capacitive behavior are achievable. However, these studies also show high variability in electrical conductivity between biochars (– S/cm). The underlying mechanisms that lead to desirable electrical properties in these lignin-derived biochars are poorly understood. In this work, we examine the causes of the variation in conductivity of lignin-derived biochar to optimize the electrical conductivity of lignin-derived biochars. To this end, we produced biochar from three different lignins, a whole biomass source (wheat stem), and cellulose at two pyrolysis temperatures (900 °C, 1100 °C). These biochars have a similar range of conductivities (0.002 to 18.51 S/cm) to what has been reported in the literature. Results from examining the relationship between chemical and physical biochar properties and electrical conductivity indicate that decreases in oxygen content and changes in particle size are associated with increases in electrical conductivity. Importantly, high variation in electrical conductivity is seen between biochars produced from lignins isolated with similar processes, demonstrating the importance of the lignin’s properties on biochar electrical conductivity. These findings indicate how lignin composition and processing may be further selected and optimized to target specific applications of lignin-derived biochars.Item Biomineralization of Plastic Waste to Improve the Strength of Plastic-Reinforced Cement Mortar(2021-04) Kane, Seth; Thane, Abby; Espinal, Michael; Lunday, Kendra; Armagan, Hakan; Phillips, Adrienne J.; Heveran, Chelsea M.; Ryan, Cecily A.The development of methods to reuse large volumes of plastic waste is essential to curb the environmental impact of plastic pollution. Plastic-reinforced cementitious materials (PRCs), such as plastic-reinforced mortar (PRM), may be potential avenues to productively use large quantities of low-value plastic waste. However, poor bonding between the plastic and cement matrix reduces the strength of PRCs, limiting its viable applications. In this study, calcium carbonate biomineralization techniques were applied to coat plastic waste and improved the compressive strength of PRM. Two biomineralization treatments were examined: enzymatically induced calcium carbonate precipitation (EICP) and microbially induced calcium carbonate precipitation (MICP). MICP treatment of polyethylene terephthalate (PET) resulted in PRMs with compressive strengths similar to that of plastic-free mortar and higher than the compressive strengths of PRMs with untreated or EICP-treated PET. Based on the results of this study, MICP was used to treat hard-to-recycle types 3–7 plastic waste. No plastics investigated in this study inhibited the MICP process. PRM samples with 5% MICP-treated polyvinyl chloride (PVC) and mixed type 3–7 plastic had compressive strengths similar to plastic-free mortar. These results indicate that MICP treatment can improve PRM strength and that MICP-treated PRM shows promise as a method to reuse plastic waste.