Scholarly Work - Mathematical Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8719

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs
    (2014-04) May, Rhea M.; Hoffman, Matt G.; Sogo, M.; Parker, Albert E.; O'Toole, George A.; Brennan, Anthony B.; Reddy, Shravanthi T.
    Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.