Scholarly Work - Mathematical Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8719

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Experimental guidance for discovering genetic networks through hypothesis reduction on time series
    (Public Library of Science, 2022-10) Cummins, Breschine; Motta, Francis C.; Moseley, Robert C.; Deckard, Anastasia; Campione, Sophia; Gedeon, Tomáš; Mischaikow, Konstantin; Haase, Steven B.
    Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.
  • Thumbnail Image
    Item
    Genetic networks encode secrets of their past
    (Elsevier BV, 2022-03) Crawford-Kahrl, Peter; Nerem, Robert R.; Cummins, Bree; Gedeon, Tomas
    Research shows that gene duplication followed by either repurposing or removal of duplicated genes is an important contributor to evolution of gene and protein interaction networks. We aim to identify which characteristics of a network can arise through this process, and which must have been produced in a different way. To model the network evolution, we postulate vertex duplication and edge deletion as evolutionary operations on graphs. Using the novel concept of an ancestrally distinguished subgraph, we show how features of present-day networks require certain features of their ancestors. In particular, ancestrally distinguished subgraphs cannot be introduced by vertex duplication. Additionally, if vertex duplication and edge deletion are the only evolutionary mechanisms, then a graph’s ancestrally distinguished subgraphs must be contained in all of the graph’s ancestors. We analyze two experimentally derived genetic networks and show that our results accurately predict lack of large ancestrally distinguished subgraphs, despite this feature being statistically improbable in associated random networks. This observation is consistent with the hypothesis that these networks evolved primarily via vertex duplication. The tools we provide open the door for analyzing ancestral networks using current networks. Our results apply to edge-labeled (e.g. signed) graphs which are either undirected or directed.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.