Scholarly Work - Chemical & Biological Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8718

Browse

Search Results

Now showing 1 - 10 of 101
  • Thumbnail Image
    Item
    Influence of Copper on Oleidesulfovibrio alaskensis G20 Biofilm Formation
    (MDPI AG, 2024-08) Thankur, Payal; Gopalakrishnan, Vinoj; Saxena, Priya; Subramaniam, Mahadevan; Mau Goh, Kian; Peyton, Brent; Fields, Matthew; Kumar Sani, Rajesh
    Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented with high copper ion concentrations of 5, 15, and 30 µM, exhibited inhibited growth in its planktonic state. Conversely, under similar copper concentrations, OA G20 demonstrated enhanced biofilm formation on glass coupons. Microscopic studies revealed that biofilms exposed to copper stress demonstrated a change in cellular morphology and more accumulation of carbohydrates and proteins than controls. Consistent with these findings, sulfur (dsrA, dsrB, sat, aprA) and electron transport (NiFeSe, NiFe, ldh, cyt3) genes, polysaccharide synthesis (poI), and genes involved in stress response (sodB) were significantly upregulated in copper-induced biofilms, while genes (ftsZ, ftsA, ftsQ) related to cellular division were negatively regulated compared to controls. These results indicate that the presence of copper ions triggers alterations in cellular morphology and gene expression levels in OA G20, impacting cell attachment and EPS production. This adaptation, characterized by increased biofilm formation, represents a crucial strategy employed by OA G20 to resist metal ion stress.
  • Thumbnail Image
    Item
    Reactive Condensation of Cr Vapor on Aluminosilicates Containing Alkaline Oxides
    (The Electrochemical Society, 2024-08) Van Leeuwen, Travis; Guerrero, Amberly; Dowdy, Ryan; Satritama, Bima; Rhamdhani, Akbar; Will, Geoffrey; Gannon, Paul
    This study is part of a series with the objective of improving fundamental understanding of reactive condensation of Chromium (Cr) vapors, which are generated from Cr containing alloys used in many high-temperature (>500 °C) process environments and can form potentially problematic condensed hexavalent (Cr(VI)) species downstream. This study specifically focuses on the effects of alkaline oxide additives in aluminosilicate fibers on Cr condensation and speciation. Cr vapors were generated by flowing high-temperature (800 °C) air containing 3% water vapor over chromia (Cr2O3) powder, with aluminosilicate fiber samples positioned downstream where the temperature decreases (<500 °C). Total condensed Cr and ratios of oxidation states were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES) and diphenyl carbazide (DPC) colorimetric/direct UV–vis spectrophotometric analyses. Results indicate presence of hexavalent Cr (Cr(VI)) species condensed on all samples investigated. The ratio of Cr(VI) to total Cr detected was consistently higher on aluminosilicate fiber samples containing alkaline oxide (CaO and MgO) additions. Computational thermodynamic equilibrium modelling corroborated experimental results showing stabilities of Ca and Mg chromate (Cr(VI)) compounds. Comparative results and analyses are presented and discussed to help inform mechanistic understanding and future related research and engineering efforts.
  • Thumbnail Image
    Item
    Solubility of 2,5-Furandicarboxylic Acid in Pure and Mixed Organic Solvent Systems at 293 K Predicted Using Hansen Solubility Parameters
    (American Chemical Society, 2024-07) Molinaro, Jacob M.; Carroll, M.; Marchan, Gabriela T.; Wettstein, Stephanie G.
    Central to the production of polyethylene furanoate (PEF), a bioplastic that could potentially replace petroleum-derived plastics, is 2,5-furandicarboxylic acid (FDCA). FDCA is a chemical derived from biomass that has low solubility in traditionally used solvents such as water. Thus, identifying solvents that can solubilize significant amounts of FDCA could allow for lower PEF production costs. In this study, FDCA solubility was investigated in nine pure solvents including H2O, acetonitrile (ACN), γ-valerolactone (GVL), γ-butyrolactone (GBL), ethanol (EtOH), methanol (MeOH), dimethyl sulfoxide (DMSO), sulfolane (SULF), and tetrahydrofuran (THF), eight binary, and three ternary solvent blends at 293 K. For all binary systems excluding DMSO and MeOH, the solubility of FDCA increased 1.5–65 times compared to the pure organic solvent, and the FDCA solubility was at least 10 times higher when compared to pure water. Specifically, the 20/80 w/w H2O/DMSO system solubilized 23.1 wt % FDCA, the highest of any binary blend studied, and 190 times more solubility than in pure water. In 20/80 w/w H2O/THF, the FDCA solubility was 60 times higher than pure water. In ternary blends that included DMSO, H2O, and either GVL, THF, or SULF, solubility increased by at least 6.6 times relative to the pure secondary organic component and 54 times relative to pure water. Using Hansen solubility parameters (HSPs), the radius of interaction (Ri, j) was found to be more strongly correlated to FDCA solubility than individual HSPs or the total solubility parameter. A MATLAB-based optimization code was developed and successful in minimizing the Ri, j of a solvent blend to maximize FDCA solubility in binary and ternary aqueous solvents.
  • Thumbnail Image
    Item
    Beyond the Surface: Non-Invasive Low-Field NMR Analysis of Microbially-Induced Calcium Carbonate Precipitation in Shale Fractures
    (Springer Science and Business Media LLC, 2024-07) Willett, Matthew R.; Bedey, Kayla; Crandall, Dustin; Seymour, Joseph D.; Rutqvist, Jonny; Cunningham, Alfred B.; Phillips, Adrienne J.; Kirkland, Catherine M.
    Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3 precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.
  • Thumbnail Image
    Item
    Digital droplet RT-LAMP increases speed of SARS-CoV-2 viral RNA detection
    (Wiley, 2024-06) Yuan, Yuan; Ellis, Perry; Tao, Ye; Bikos, Dimitri A.; Loveday, Emma K.; Thomas, Mallory M.; Wilking, James N.; Chang, Connie B.; Ye, Fangfu; Weitz, David A.
    Nucleic acid amplification testing (NAAT) remains one of the most reliable methods for pathogen identification. However, conventional bulk NAATs may not be sufficiently fast or sensitive enough for the detection of clinically-relevant pathogens in point-of-care testing. Here, we have developed a digital droplet RT-LAMP (ddRT-LAMP) assay that rapidly and quantitatively detects the SARS-CoV-2 viral E gene in microfluidic drops. Droplet partitioning using ddRT-LAMP significantly accelerates detection times across a wide range of template concentrations compared to bulk RT-LAMP assays. We discover that a reduction in droplet diameter decreases assay times up to a certain size, upon which surface adsorption of the RT-LAMP polymerase reduces reaction efficiency. Optimization of drop size and polymerase concentration enables rapid, sensitive, and quantitative detection of the SARS-CoV-2 E gene in only 8 min. These results highlight the potential of ddRT-LAMP assays as an excellent platform for quantitative point-of-care testing.
  • Thumbnail Image
    Item
    High Selectivity Reactive Carbon Dioxide Capture over Zeolite Dual-Functional Materials
    (American Chemical Society, 2024-05) Crawford, James M.; Rasmussen, Matthew J.; McNeary, W. Wilson; Halingstad, Sawyer; Hayden, Steven C.; Dutta, Nikita S.; Pang, Simon H.; Yung, Matthew M.
    Reactive carbon dioxide capture (RCC) is a process where carbon dioxide (CO2) is captured from a mixed gas stream (such as air) and converted to products without first performing a separation step to concentrate the CO2. In this work, zeolite dual-functional materials (ZFMs) are introduced and evaluated for simulated RCC. The studied ZFMs feature high surface area, crystalline, microporous zeolite faujasite (FAU) as the support. Sodium oxide (“Na2O”) is impregnated as an effective capture agent capable of scavenging low concentration CO2 (1,000 ppm). Exchanged and impregnated sodium on FAU chemisorbs CO2 as carbonates and bicarbonates but does not promote the conversion of sorbed CO2 to products when heated in hydrogen. The addition of Ru promotes the formation of formates, while the addition of Pt generates carbonyl surface species when heated in hydrogen. The active metal then promotes extremely high selectivity for CO2 hydrogenation to either methane on Ru catalyst (∼150 °C) or carbon monoxide on Pt catalyst (∼200 °C) when heated in reducing atmospheres.
  • Thumbnail Image
    Item
    Rapamycin does not alter bone microarchitecture or material properties quality in young-adult and aged female C57BL/6 mice
    (Oxford University Press, 2024-01) Devine, Connor C.; Brown, Kenna C.; Paton, Kat O.; Heveran, Chelsea M.; Martin, Stephen A.
    Advancing age is the strongest risk factor for osteoporosis and skeletal fragility. Rapamycin is an FDA-approved immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) complex, extends lifespan, and protects against aging-related diseases in multiple species; however, the impact of rapamycin on skeletal tissue is incompletely understood. We evaluated the effects of a short-term, low-dosage, interval rapamycin treatment on bone microarchitecture and strength in young-adult (3 mo old) and aged female (20 mo old) C57BL/6 mice. Rapamycin (2 mg/kg body mass) was administered via intraperitoneal injection 1×/5 d for a duration of 8 wk; this treatment regimen has been shown to induce geroprotective effects while minimizing the side effects associated with higher rapamycin dosages and/or more frequent or prolonged delivery schedules. Aged femurs exhibited lower cancellous bone mineral density, volume, trabecular connectivity density and number, higher trabecular thickness and spacing, and lower cortical thickness compared to young-adult mice. Rapamycin had no impact on assessed microCT parameters. Flexural testing of the femur revealed that both yield strength and ultimate strength were lower in aged mice compared to young-adult mice. There were no effects of rapamycin on these or other measures of bone biomechanics. Age, but not rapamycin, altered local and global measures of bone turnover. These data demonstrate that short-term, low-dosage interval rapamycin treatment does not negatively or positively impact the skeleton of young-adult and aged mice.
  • Thumbnail Image
    Item
    Scale-Up of a Two-Stage Cu-Catalyzed Alkaline-Oxidative Pretreatment of Hybrid Poplar
    (American Chemical Society, 2024-03) Dülger, Dilara N.; Yuan, Zhaoyang; Singh, Sandip K.; Omolabake, Surajudeen; Czarnecki, Celeste R.; Nikafshar, Saeid; Li, Mingfei; Bécsy-Jakab, Villő E.; Park, Seonghyun; Park, Sunkyu; Nejad, Mojgan; Stahl, Shannon S.; Hegg, Eric L.; Hodge, David B.
    A two-stage alkaline-oxidative pretreatment of hybrid poplar was investigated at scale (20 L reactor volume) with the goal of understanding how reaction conditions as well as interstage mechanical refining impact downstream process responses. The pretreatment comprises a first stage of alkaline delignification (alkaline pre-extraction) followed by a second delignification stage employing Cu-catalyzed alkaline hydrogen peroxide with supplemental O2 (O2-enhanced Cu-AHP). Increasing pre-extraction severity (i.e., temperature and alkali loading) and pretreatment oxidation (increasing H2O2 loading) were found to increase mass and lignin solubilization in each stage. Lignin recovered from the first stage was subjected to oxidative depolymerization and led to aromatic monomer yields as high as 23.0% by mass. Lignins recovered from the second-stage Cu-AHP pretreatment liquors were shown to exhibit aliphatic hydroxyl contents more than 6-fold higher than a typical hardwood kraft lignin, indicating that these lignins could serve as a biobased polyol for a range of polyurethane applications.
  • Thumbnail Image
    Item
    Extraction, recovery, and characterization of lignin from industrial corn stover lignin cake
    (Elsevier BV, 2024-05) Bécsy-Jakab, Villő Enikő; Savoy, Anthony; Saulnier, Brian K.; Singh, Sandip K.; Hodge, David B.
    Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.
  • Thumbnail Image
    Item
    Pericellular Matrix Formation and Atomic Force Microscopy of Single Primary Human Chondrocytes Cultured in Alginate Microgels
    (Wiley, 2023-09) Fredrikson, Jacob P.; Brahmachary, Priyanka P.; June, Ronald K.; Cox, Lewis M.; Chang, Connie B.
    One of the main components of articular cartilage is the chondrocyte's pericellular matrix (PCM), which is critical for regulating mechanotransduction, biochemical cues, and healthy cartilage development. Here, individual primary human chondrocytes (PHC) are encapsulated and cultured in 50 µm diameter alginate microgels using drop-based microfluidics. This unique culturing method enables PCM formation and manipulation of individual cells. Over ten days, matrix formation is observed using autofluorescence imaging, and the elastic moduli of isolated cells are measured using AFM. Matrix production and elastic modulus increase are observed for the chondrons cultured in microgels. Furthermore, the elastic modulus of cells grown in microgels increases ≈ten-fold over ten days, nearly reaching the elastic modulus of in vivo PCM. The AFM data is further analyzed using a Gaussian mixture model and shows that the population of PHCs grown in microgels exhibit two distinct populations with elastic moduli averaging 9.0 and 38.0 kPa. Overall, this work shows that microgels provide an excellent culture platform for the growth and isolation of PHCs, enabling PCM formation that is mechanically similar to native PCM. The microgel culture platform presented here has the potential to revolutionize cartilage regeneration procedures through the inclusion of in vitro developed PCM.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.