Scholarly Work - Chemical & Biological Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8718

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns
    (2012-07) Ebigbo, Anozie; Phillips, Adrienne J.; Gerlach, Robin; Helmig, Rainer; Cunningham, Alfred B.; Class, Holger; Spangler, Lee H.
    This investigation focuses on the use of microbially induced calcium carbonate precipitation (MICP) to set up subsurface hydraulic barriers to potentially increase storage security near wellbores of CO2 storage sites. A numerical model is developed, capable of accounting for carbonate precipitation due to ureolytic bacterial activity as well as the flow of two fluid phases in the subsurface. The model is compared to experiments involving saturated flow through sand-packed columns to understand and optimize the processes involved as well as to validate the numerical model. It is then used to predict the effect of dense-phase CO2 and CO2-saturated water on carbonate precipitates in a porous medium.
  • Thumbnail Image
    Item
    Taxis toward hydrogen gas by Methanococcus maripaludis
    (2013-11) Brileya, Kristen A.; Connolly, James M.; Downey, Carey; Gerlach, Robin; Fields, Matthew W.
    Knowledge of taxis (directed swimming) in the Archaea is currently expanding through identification of novel receptors, effectors, and proteins involved in signal transduction to the flagellar motor. Although the ability for biological cells to sense and swim toward hydrogen gas has been hypothesized for many years, this capacity has yet to be observed and demonstrated. Here we show that the average swimming velocity increases in the direction of a source of hydrogen gas for the methanogen Methanococcus maripaludis using a capillary assay with anoxic gas-phase control and time-lapse microscopy. The results indicate that a methanogen couples motility to hydrogen concentration sensing, and is the first direct observation of hydrogenotaxis in any domain of life. Hydrogenotaxis represents a strategy that would impart a competitive advantage to motile microorganisms that compete for hydrogen gas and would impact the C, S and N cycles.
  • Thumbnail Image
    Item
    Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park
    (2013-11) Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.
    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.