Scholarly Work - Chemical & Biological Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8718

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Beyond the Surface: Non-Invasive Low-Field NMR Analysis of Microbially-Induced Calcium Carbonate Precipitation in Shale Fractures
    (Springer Science and Business Media LLC, 2024-07) Willett, Matthew R.; Bedey, Kayla; Crandall, Dustin; Seymour, Joseph D.; Rutqvist, Jonny; Cunningham, Alfred B.; Phillips, Adrienne J.; Kirkland, Catherine M.
    Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3 precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.
  • Thumbnail Image
    Item
    Impact of Xylose on Dynamics of Water Diffusion in Mesoporous Zeolites Measured by NMR
    (2021-09) Nelson, Madison L.; Romo, Joelle E.; Wettstein, Stephanie G.; Seymour, Joseph D.
    Zeolites are known to be effective catalysts in biomass converting processes. Understanding the mesoporous structure and dynamics within it during such reactions is important in effectively utilizing them. Nuclear magnetic resonance (NMR) T2 relaxation and diffusion measurements, using a high-power radio frequency probe, are shown to characterize the dynamics of water in mesoporous commercially made 5A zeolite beads before and after the introduction of xylose. Xylose is the starting point in the dehydration into furfural. The results indicate xylose slightly enhances rotational mobility while it decreases translational motion through altering the permeability, K, throughout the porous structure. The measurements show xylose inhibits pure water from relocating into larger pores within the zeolite beads where it eventually is expelled from the bead itself.
  • Thumbnail Image
    Item
    Characterization of velocity fluctuations and the transition from transient to steady state shear banding with and without pre-shear in a wormlike micelle solution under shear startup by Rheo-NMR
    (2020-04) Al-kaby, Rehab N.; Codd, Sarah L.; Seymour, Joseph D.; Brown, Jennifer R.
    Rheo-NMR velocimetry was used to study shear banding of a 6 wt.% cetylpyridinium chloride (CPCl) worm-like micelle solution under shear startup conditions with and without pre-shear. 1D velocity profiles across the fluid gap of a concentric cylinder Couette shear cell were measured every 1 s following shear startup for four different applied shear rates within the stress plateau. Fitting of the velocity profiles allowed calculation of the shear banding characteristics (shear rates in the high and low shear band, the interface position and apparent slip at the inner rotating wall) as the flow transitioned from transient to steady state regimes. Characteristic timescales to reach steady state were obtained and found to be similar for all shear banding characteristics. Timescales decreased with increasing applied shear rate. Large temporal fluctuations with time were also observed and Fourier transform of the time and velocity autocorrelation functions quantified the fluctuation frequencies. Frequencies corresponded to the elastically driven hydrodynamic instabilities, i.e. vortices, that are known to occur in the unstable high shear band and were dependent upon both applied shear rate and the pre-shear protocol.
  • Thumbnail Image
    Item
    Glass Dynamics and Domain Size in a Solvent-Polymer Weak Gel Measured by Multidimensional Magnetic Resonance Relaxometry and Diffusometry
    (2019-02) Williamson, Nathan H.; Dower, April M.; Codd, Sarah L.; Broadbent, Amber L.; Gross, Dieter; Seymour, Joseph D.
    Nuclear magnetic resonance measurements of rotational and translational molecular dynamics are applied to characterize the nanoscale dynamic heterogeneity of a physically cross-linked solvent-polymer system above and below the glass transition temperature. Measured rotational dynamics identify domains associated with regions of solidlike and liquidlike dynamics. Translational dynamics provide quantitative length and timescales of nanoscale heterogeneity due to polymer network cross-link density. Mean squared displacement measurements of the solvent provide microrheological characterization of the system and indicate glasslike caging dynamics both above and below the glass transition temperature.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.