Scholarly Work - Chemical & Biological Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8718

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes
    (2013-06) Ammons, Mary Cloud B.; Tripet, Brian P.; Carlson, Ross P.; Kirker, Kelly R.; Gross, M. A.; Stanisich, Jessica J.; Copie, Valerie
    Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds.
  • Thumbnail Image
    Item
    Genome sequence of Janthinobacterium sp. CG23_2, a violacein-producing isolate from an Antarctic supraglacial stream.
    (2016-01) Smith, Heidi J.; Foreman, Christine M.; Akiyama, Tatsuya; Franklin, Michael J.; Devitt, N. P.; Ramaraj, Thiruvarangan
    Here, we present the draft genome sequence for the violacein-producing Janthinobacterium sp. CG23_2 isolated from an Antarctic supraglacial stream. The genome is ~7.85 Mb, with a G+C content of 63.5%. The genome includes 7,247 candidate protein coding genes, which may provide insight into UV tolerance mechanisms.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.