Scholarly Work - Chemical & Biological Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8718

Browse

Search Results

Now showing 1 - 10 of 35
  • Thumbnail Image
    Item
    Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis
    (2020-12) Park, Heejoon; Patel, Ayushi; Hunt, Kristopher A.; Henson, Michael A.; Carlson, Ross P.
    Planktonic cultures, of a rationally designed consortium, demonstrated emergent properties that exceeded the sums of monoculture properties, including a >200% increase in cellobiose catabolism, a >100% increase in glycerol catabolism, a >800% increase in ethanol production, and a >120% increase in biomass productivity. The consortium was designed to have a primary and secondary-resource specialist that used crossfeeding with a positive feedback mechanism, division of labor, and nutrient and energy transfer via necromass catabolism. The primary resource specialist was Clostridium phytofermentans (a.k.a. Lachnoclostridium phytofermentans), a cellulolytic, obligate anaerobe. The secondary-resource specialist was Escherichia coli, a versatile, facultative anaerobe, which can ferment glycerol and byproducts of cellobiose catabolism. The consortium also demonstrated emergent properties of enhanced biomass accumulation when grown as biofilms, which created high cell density communities with gradients of species along the vertical axis. Consortium biofilms were robust to oxic perturbations with E. coli consuming O2, creating an anoxic environment for C. phytofermentans. Anoxic/oxic cycling further enhanced biomass productivity of the biofilm consortium, increasing biomass accumulation ~250% over the sum of the monoculture biofilms. Consortium emergent properties were credited to several synergistic mechanisms. E. coli consumed inhibitory byproducts from cellobiose catabolism, driving higher C. phytofermentans growth and higher cellulolytic enzyme production, which in turn provided more substrate for E. coli. E. coli necromass enhanced C. phytofermentans growth while C. phytofermentans necromass aided E. coli growth via the release of peptides and amino acids, respectively. In aggregate, temporal cycling of necromass constituents increased flux of cellulose-derived resources through the consortium. The study establishes a consortia-based, bioprocessing strategy built on naturally occurring interactions for improved conversion of cellulose-derived sugars into bioproducts.
  • Thumbnail Image
    Item
    Mineralogy of microbially induced calcium carbonate precipitates formed using single cell drop-based microfluidics
    (2020-10) Zambare, Neerja M.; Naser, Nada Y.; Gerlach, Robin; Chang, Connie B.
    Microbe-mineral interactions are ubiquitous and can facilitate major biogeochemical reactions that drive dynamic Earth processes such as rock formation. One example is microbially induced calcium carbonate precipitation (MICP) in which microbial activity leads to the formation of calcium carbonate precipitates. A majority of MICP studies have been conducted at the mesoscale but fundamental questions persist regarding the mechanisms of cell encapsulation and mineral polymorphism. Here, we are the first to investigate and characterize precipitates on the microscale formed by MICP starting from single ureolytic E. coli MJK2 cells in 25 µm diameter drops. Mineral precipitation was observed over time and cells surrounded by calcium carbonate precipitates were observed under hydrated conditions. Using Raman microspectroscopy, amorphous calcium carbonate (ACC) was observed first in the drops, followed by vaterite formation. ACC and vaterite remained stable for up to 4 days, possibly due to the presence of organics. The vaterite precipitates exhibited a dense interior structure with a grainy exterior when examined using electron microscopy. Autofluorescence of these precipitates was observed possibly indicating the development of a calcite phase. The developed approach provides an avenue for future investigations surrounding fundamental processes such as precipitate nucleation on bacteria, microbe-mineral interactions, and polymorph transitions.
  • Thumbnail Image
    Item
    Importance of specific substrate utilization by microbes in microbially enhanced coal-bed methane production: A modelling study
    (2020-07) Emmert, Simon; Class, Holger; Davis, Katherine J.; Gerlach, Robin
    This study addresses a major gap in the understanding and control of microbially enhanced coal-bed methane (MECBM) production. A mathematical and conceptual model comprises a food-web that includes two types of bacteria and three types of archaea representing substrate-specific members of the community; the microbial community members are potentially interacting by competing for or being inhibited by substrates or products of other microbial community members. The model was calibrated using data sets from two different experimental setups. The calibrated model effectively predicted the methane concentrations within a 7% range of deviation from the experimental results. The results of additional batch experiments using varied conditions are also reproduced in an attempt to validate the model and to test the hypothesis of amendment-induced stimulation of microbial community members capable of converting coal into substrates available to methane producing microbes. This study significantly enhances the understanding of the complex interactions between microbial activity, substrate-specificity and bio-availability of coal for methane production, and provides the basis for including hydraulic flow and transport processes into future mathematical models important for the design and implementation of more sustainable methods of harvesting methane from un-mineable coalbeds.
  • Thumbnail Image
    Item
    Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions
    (2019-07) Godoy-Santos, Fernanda; Pitts, Betsey; Stewart, Philip S.; Mantovani, Hilario C.
    Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus . Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.
  • Thumbnail Image
    Item
    DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology
    (2019-09) Pratt, Shawna L.; Zath, Geoffrey K.; Williamson, Kelly S.; Franklin, Michael J.; Chang, Connie B.
    The physiological heterogeneity of cells within a microbial population imparts resilience to stresses such as antimicrobial treatments and nutrient limitation. This resilience is partially due to a subpopulation of cells that can survive such stresses and regenerate the community. Microfluidic approaches now provide a means to study microbial physiology and bacterial heterogeneity at the single cell level, improving our ability to isolate and examine these subpopulations. Drop-based microfluidics provides a high-throughput approach to study individual cell physiology within bacterial populations. Using this approach, single cells are isolated from the population and encapsulated in growth medium dispersed in oil using a 15 μm diameter drop making microfluidic device. The drops are arranged as a packed monolayer inside a polydimethylsiloxane (PDMS) microfluidic device. Growth of thousands of individual cells in identical microenvironments can then be imaged using confocal laser scanning microscopy (CLSM). A challenge for this approach has been the maintenance of drop stability during extended time-lapse imaging. In particular, the drops do not maintain their volume over time during incubation in PDMS devices, due to fluid transport into the porous PDMS surroundings. Here, we present a strategy for PDMS device preparation that stabilizes drop position and volume within a drop array on a microfluidic chip for over 20 h. The stability of water-in-oil drops is maintained by soaking the device in a reservoir containing both water and oil in thermodynamic equilibrium. This ensures that phase equilibrium of the drop emulsion fluids within the porous PDMS material is maintained during drop incubation and imaging. We demonstrate the utility of this approach, which we label DropSOAC (DropStabilization On AChip), for time-lapse studies of bacterial growth. We characterize growth of Pseudomonas aeruginosa and its Δhpf mutant derivative during resuscitation and growth following starvation. We demonstrate that growth rate and lag time heterogeneity of hundreds of individual bacterial cells can be determined starting from single isolated cells. The results show that the DropSOAC capsule provides a high-throughput approach toward studies of microbial physiology at the single cell level, and can be used to characterize physiological differences of cells from within a larger population.
  • Thumbnail Image
    Item
    Janthinobacterium CG23_2: comparative genome analysis reveals enhanced environmental sensing and transcriptional regulation for adaptation to life in an Antarctic supraglacial stream
    (2019-10) Dieser, Markus; Smith, Heidi J.; Ramaraj, Thiruvarangan; Foreman, Christine M.
    As many bacteria detected in Antarctic environments are neither true psychrophiles nor endemic species, their proliferation in spite of environmental extremes gives rise to genome adaptations. Janthinobacterium sp. CG23_2 is a bacterial isolate from the Cotton Glacier stream, Antarctica. To understand how Janthinobacterium sp. CG23_2 has adapted to its environment, we investigated its genomic traits in comparison to genomes of 35 published Janthinobacterium species. While we hypothesized that genome shrinkage and specialization to narrow ecological niches would be energetically favorable for dwelling in an ephemeral Antarctic stream, the genome of Janthinobacterium sp. CG23_2 was on average 1.7 ± 0.6 Mb larger and predicted 1411 ± 499 more coding sequences compared to the other Janthinobacterium spp. Putatively identified horizontal gene transfer events contributed 0.92 Mb to the genome size expansion of Janthinobacterium sp. CG23_2. Genes with high copy numbers in the species-specific accessory genome of Janthinobacterium sp. CG23_2 were associated with environmental sensing, locomotion, response and transcriptional regulation, stress response, and mobile elements—functional categories which also showed molecular adaptation to cold. Our data suggest that genome plasticity and the abundant complementary genes for sensing and responding to the extracellular environment supported the adaptation of Janthinobacterium sp. CG23_2 to this extreme environment.
  • Thumbnail Image
    Item
    Long-Term Flow through Human Intestinal Organoids with the Gut Organoid Flow Chip (GOFlowChip)
    (2019-09) Sidar, Barkan; Jenkins, Brittany R.; Huang, Sha; Spence, Jason R.; Walk, Seth T.
    Human intestinal organoids (HIOs) are millimeter-scale models of the human intestinal epithelium and hold tremendous potential for advancing fundamental and applied biomedical research. HIOs resemble the native gut in that they consist of a fluid-filled lumen surrounded by a polarized epithelium and associated mesenchyme; however, their topologically-closed, spherical shape prevents flow through the interior luminal space, making the system less physiological and leading to the buildup of cellular and metabolic waste. These factors ultimately limit experimentation inside the HIOs. Here, we present a millifluidic device called the gut organoid flow chip (GOFlowChip), which we use to “port” HIOs and establish steady-state liquid flow through the lumen for multiple days. This long-term flow is enabled by the use of laser-cut silicone gaskets, which allow liquid in the device to be slightly pressurized, suppressing bubble formation. To demonstrate the utility of the device, we establish separate luminal and extraluminal flow and use luminal flow to remove accumulated waste. This represents the first demonstration of established liquid flow through the luminal space of a gastrointestinal organoid over physiologically relevant time scales. Flow cytometry results reveal that HIO cell viability is unaffected by long-term porting and luminal flow. We expect the real-time, long-term control over luminal and extraluminal contents provided by the GOFlowChip will enable a wide variety of studies including intestinal secretion, absorption, transport, and co-culture with intestinal microorganisms.
  • Thumbnail Image
    Item
    A Novel Gastric Spheroid Co-culture Model Reveals Chemokine-Dependent Recruitment of Human Dendritic Cells to the Gastric Epithelium
    (2019-03) Sebrell, Thomas A.; Hashimi, Marziah; Sidar, Barkan; Wilkinson, Royce A.; Kirpotina, Liliya; Quinn, Mark T.; Malkoc, Zeynep; Taylor, Paul J.; Wilking, James N.; Bimczok, Diane
    Background & Aims Gastric dendritic cells (DCs) control the adaptive response to infection with Helicobacter pylori, a major risk factor for peptic ulcer disease and gastric cancer. We hypothesize that DC interactions with the gastric epithelium position gastric DCs for uptake of luminal H pylori and promote DC responses to epithelial-derived mediators. The aim of this study was to determine whether the gastric epithelium actively recruits DCs using a novel co-culture model of human gastric epithelial spheroids and monocyte-derived DCs. Methods Spheroid cultures of primary gastric epithelial cells were infected with H pylori by microinjection. Co-cultures were established by adding human monocyte-derived DCs to the spheroid cultures and were analyzed for DC recruitment and antigen uptake by confocal microscopy. Protein array, gene expression polymerase chain reaction array, and chemotaxis assays were used to identify epithelial-derived chemotactic factors that attract DCs. Data from the co-culture model were confirmed using human gastric tissue samples. Results Human monocyte-derived DCs co-cultured with gastric spheroids spontaneously migrated to the gastric epithelium, established tight interactions with the epithelial cells, and phagocytosed luminally applied H pylori. DC recruitment was increased upon H pylori infection of the spheroids and involved the activity of multiple chemokines including CXCL1, CXCL16, CXCL17, and CCL20. Enhanced chemokine expression and DC recruitment to the gastric epithelium also was observed in H pylori–infected human gastric tissue samples. Conclusions Our results indicate that the gastric epithelium actively recruits DCs for immunosurveillance and pathogen sampling through chemokine-dependent mechanisms, with increased recruitment upon active H pylori infection.
  • Thumbnail Image
    Item
    Kinetics of Calcite Precipitation by Ureolytic Bacteria under Aerobic and Anaerobic Conditions
    (2019-05) Mitchell, Andrew C.; Espinosa-Ortiz, Erika J.; Parks, Stacy L.; Phillips, Adrienne J.; Cunningham, Alfred B.; Gerlach, Robin
    The kinetics of urea hydrolysis (ureolysis) and induced calcium carbonate (CaCO3) precipitation for engineering use in the subsurface was investigated under aerobic conditions using Sporosarcina pasteurii (ATCC strain 11859) as well as Bacillus sphaericus strains 21776 and 21787. All bacterial strains showed ureolytic activity inducing CaCO3 precipitation aerobically. Rate constants not normalized to biomass demonstrated slightly higher-rate coefficients for both ureolysis (kurea) and CaCO3 precipitation (kprecip) for B. sphaericus 21776 (kurea=0.10±0.03 h−1, kprecip=0.60±0.34 h−1) compared to S. pasteurii (kurea=0.07±0.02 h−1, kprecip=0.25±0.02 h−1), though these differences were not statistically significantly different. B. sphaericus 21787 showed little ureolytic activity but was still capable of inducing some CaCO3 precipitation. Cell growth appeared to be inhibited during the period of CaCO3 precipitation. Transmission electron microscopy (TEM) images suggest this is due to the encasement of cells and was reflected in lower kurea values observed in the presence of dissolved Ca. However, biomass regrowth could be observed after CaCO3 precipitation ceased, which suggests that ureolysis-induced CaCO3 precipitation is not necessarily lethal for the entire population. The kinetics of ureolysis and CaCO3 precipitation with S. pasteurii was further analyzed under anaerobic conditions. Rate coefficients obtained in anaerobic environments were comparable to those under aerobic conditions; however, no cell growth was observed under anaerobic conditions with NO−3, SO2−4 or Fe3+ as potential terminal electron acceptors. These data suggest that the initial rates of ureolysis and ureolysis-induced CaCO3 precipitation are not significantly affected by the absence of oxygen but that long-term ureolytic activity might require the addition of suitable electron acceptors. Variations in the ureolytic capabilities and associated rates of CaCO3 precipitation between strains must be fully considered in subsurface engineering strategies that utilize microbial amendments.
  • Thumbnail Image
    Item
    Quorum sensing inhibition as a promising method to control biofilm growth in metalworking fluids
    (2019-04) Ozcan, Safiye S.; Dieser, Markus; Parker, Albert E.; Balasubramanian, Narayanaganesh; Foreman, Christine M.
    Microbial contamination in metalworking systems is a critical problem. This study determined the microbial communities in metalworking fluids (MWFs) from two machining shops and investigated the effect of quorum sensing inhibition (QSI) on biofilm growth. In both operations, biofilm-associated and planktonic microbial communities were dominated by Pseudomonadales (60.2–99.7%). Rapid recolonization was observed even after dumping spent MWFs and meticulous cleaning. Using Pseudomonas aeruginosa PAO1 as a model biofilm organism, patulin (40 µM) and furanone C-30 (75 µM) were identified as effective QSI agents. Both agents had a substantially higher efficacy compared to α-amylase (extracellular polymeric substance degrading enzyme) and reduced biofilm formation by 63% and 76%, respectively, in MWF when compared to untreated controls. Reduced production of putatively identified homoserine lactones and quinoline in MWF treated with QS inhibitors support the effect of QSI on biofilm formation. The results highlight the effectiveness of QSI as a potential strategy to eradicate biofilms in MWFs.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.