Scholarly Work - Microbiology & Cell Biology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3494

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Understanding phycosomal dynamics to improve industrial microalgae cultivation
    (Elsevier BV, 2024-01) Miller, Isaac R.; Bui, Huyen; Wood, Jessica B.; Fields, Matthew W.; Gerlach, Robin
    Algal–bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.
  • Thumbnail Image
    Item
    Genomic Features and Pervasive Negative Selection in Rhodanobacter Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer
    (American Society for Microbiology, 2022-02) Peng, Mu; Wang, Dongyu; Lui, Lauren M.; Nielsen, Torben; Tian, Renmao; Kempher, Megan L.; Tao, Xuanyu; Pan, Chongle; Chakraborty, Romy; Deutschbauer, Adam M.; Thorgersen, Michael P.; Adams, Michael W. W.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Aifen; Zhou, Jizhong
    Despite the dominance of Rhodanobacter species in the subsurface of the contaminated Oak Ridge Reservation (ORR) site, very little is known about the mechanisms underlying their adaptions to the various stressors present at ORR. Recently, multiple Rhodanobacter strains have been isolated from the ORR groundwater samples from several wells with varying geochemical properties.
  • Thumbnail Image
    Item
    Microbial community changes during a toxic cyanobacterial bloom in an alkaline Hungarian lake
    (2018-08) Bell, Tisza A. S.; Feldoldi, Tamas; Sen-Kilic, Emel; Vasas, Gabor; Fields, Matthew W.; Peyton, Brent M.
    The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejer county, Hungary. The sampled Lake Velence microbial populations (algal and bacterial) were analyzed to identify potential correlations with other community members and environmental parameters at six timepoints over 6weeks in the Spring of 2012. Correlations between community members suggest a positive relationship between certain algal and bacterial populations (e.g. Chlamydomondaceae with Actinobacteria and Acidobacteria), while other correlations allude to changes in these relationships over time. During the study, high nitrogen availability may have favored non-nitrogen fixing cyanobacteria, such as the toxin-producing Microcystis aeruginosa, and the eutrophic effect may have been exacerbated by high phosphorus availability as well as the high calcium and magnesium content of the Carpathian Basin bedrock, potentially fostering exopolymer production and cell aggregation. Cyanobacterial bloom formation could have a negative environmental impact on other community members and potentially affect overall water quality as well as recreational activities. To our knowledge, this is the first prediction for relationships between photoautotrophic eukaryotes and bacteria from an alkaline, Hungarian lake.
  • Thumbnail Image
    Item
    Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments
    (2018-09) Smith, Heidi J.; Zelaya, Anna J.; De León, Kara B.; Chakraborty, R.; Elias, Dwayne A.; Hazen, Terry C.; Arkin, Adam P.; Cunningham, Alfred B.; Fields, Matthew W.
    Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.
  • Thumbnail Image
    Item
    Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning
    (2018-02) He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A.; Watson, David B.; Adams, Michael W. W.; Fields, Matthew W.; Alm, Eric J.; Hazen, Terry C.; Adams, Paul D.; Arkin, Adam P.; Zhou, Jizhong
    Contamination from anthropogenic activities has significantly impacted Earth\'s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.
  • Thumbnail Image
    Item
    Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia
    (2018-04) Carlson, Ross P.; Beck, Ashley E.; Phalak, Poonam; Fields, Matthew W.; Gedeon, Tomas; Hanley, Luke; Harcombe, W. R.; Henson, Michael A.; Heys, Jeffrey J.
    Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.
  • Thumbnail Image
    Item
    A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities
    (2016-01) Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.
    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open, non-sterile environment.
  • Thumbnail Image
    Item
    Potential Role of Acetyl-CoA Synthetase (acs) & Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea
    (2015-08) Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; Cleveland, Sean; Hunt, Kristopher A.; Fields, Matthew W.
    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- and ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. These results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life.
  • Thumbnail Image
    Item
    Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy
    (2014-12) Brileya, Kristen A.; Camilleri, Laura B.; Zane, Grant M.; Wall, Judy D.; Fields, Matthew W.
    Sulfate-reducing bacteria (SRB) can interact syntrophically with other community members in the absence of sulfate, and interactions with hydrogen-consuming methanogens are beneficial when these archaea consume potentially inhibitory H2 produced by the SRB. A dual continuous culture approach was used to characterize population structure within a syntrophic biofilm formed by the SRB Desulfovibrio vulgaris Hildenborough and the methanogenic archaeum Methanococcus maripaludis. Under the tested conditions, monocultures of D. vulgaris formed thin, stable biofilms, but monoculture M. maripaludis did not. Microscopy of intact syntrophic biofilm confirmed that D. vulgaris formed a scaffold for the biofilm, while intermediate and steady-state images revealed that M. maripaludis joined the biofilm later, likely in response to H2 produced by the SRB. Close interactions in structured biofilm allowed efficient transfer of H2 to M. maripaludis, and H2 was only detected in cocultures with a mutant SRB that was deficient in biofilm formation (ΔpilA). M. maripaludis produced more carbohydrate (uronic acid, hexose, and pentose) as a monoculture compared to total coculture biofilm, and this suggested an altered carbon flux during syntrophy. The syntrophic biofilm was structured into ridges (∼300 × 50 μm) and models predicted lactate limitation at ∼50 μm biofilm depth. The biofilm had structure that likely facilitated mass transfer of H2 and lactate, yet maximized biomass with a more even population composition (number of each organism) when compared to the bulk-phase community. Total biomass protein was equivalent in lactate-limited and lactate-excess conditions when a biofilm was present, but in the absence of biofilm, total biomass protein was significantly reduced. The results suggest that multispecies biofilms create an environment conducive to resource sharing, resulting in increased biomass retention, or carrying capacity, for cooperative populations.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.