Stoy Lab
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/14931
In the Stoy Lab, we study the role of vegetation in the climate system. To do so we measure and model the exchange of water, heat, and trace gases like carbon dioxide and methane between the terrestrial surface and the atmosphere. Recent efforts seek to understand feedbacks between land management and precipitation processes.
Browse
Item Linking flux network measurements to continental scale simulations: Ecosystem gas exchange capacity along a European transect under non-water-stressed conditions(2007-01) Owen, Katherine E.; Tenhunen, John; Reichstein, Markus; Wang, Quan; Falge, Eva; Geyer, Ralf; Xiao, Xiangming; Stoy, Paul C.; Ammann, Christof; Arain, M. Altaf; Aubinet, Marc; Aurela, Mika; Bernhofer, Christian; Chojnicki, Bogdan H.; Granier, Andre; Gruenwald, Thomas; Hadley, Julian; Heinesch, Bernard; Hollinger, David Y.; Knohl, Alexander; Kutsch, Werner L.; Lohila, Annalea; Meyers, Tilden P.; Moors, Eddy J.; Moureaux, Christine; Pilegaard, Kim; Saigusa, Nobuko; Verma, Shashi B.; Vesala, Timo; Vogel, ChrisThis paper examines long‐term eddy covariance data from 18 European and 17 North American and Asian forest, wetland, tundra, grassland, and cropland sites under non‐water‐stressed conditions with an empirical rectangular hyperbolic light response model and a single layer two light‐class carboxylase‐based model. Relationships according to ecosystem functional type are demonstrated between empirical and physiological parameters, suggesting linkages between easily estimated parameters and those with greater potential for process interpretation. Relatively sparse documentation of leaf area index dynamics at flux tower sites is found to be a major difficulty in model inversion and flux interpretation. Therefore, a simplification of the physiological model is carried out for a subset of European network sites with extensive ancillary data. The results from these selected sites are used to derive a new parameter and means for comparing empirical and physiologically based methods across all sites, regardless of ancillary data. The results from the European analysis are then compared with results from the other Northern Hemisphere sites and similar relationships for the simplified process‐based parameter were found to hold for European, North American, and Asian temperate and boreal climate zones. This parameter is useful for bridging between flux network observations and continental scale spatial simulations of vegetation/atmosphere carbon dioxide exchange.Item Redefinition and global estimation of basal ecosystem respiration rate(2001-10-13) Yuan, Wenping; Luo, Yiqi; Li, Shuguang; Yu, Guirui; Zhou, Tao; Bahn, Michael; Black, Andy T.; Desai, Ankur R.; Cescatti, Alessandro; Marcolla, Barbara; Jacobs, Cor; Chen, Jiquan; Aurela, Mika; Bernhofer, Christian; Gielen, Bert; Bohrer, Gil; Cook, David R.; Dragoni, Danilo; Dunn, Allison L.; Gianelle, Damiano; Grünwald, Thomas; Ibrom, Andreas; Leclerc, Monique Y.; Lindroth, Anders; Liu, Heping; Marchesini, Luca Belelli; Montagnani, Leonardo; Pita, Gabriel; Rodeghiero, Mirco; Rodrigues, Abel; Starr, Gregory; Stoy, Paul C.Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3°S to ∼70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.