Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    Item
    Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes
    (2009-07) Suvorova, Elena S.; Lucas, Olivier; Weisend, Carla M.; Rollins, MaryClare F.; Merrill, Gary F.; Capecchi, Mario R.; Schmidt, Edward E.
    "Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response."
  • Thumbnail Image
    Item
    Compromised host defense on Pseudomonas aeruginosa biofilms: Characterization of neutrophil and biofilm interactions
    (2003-10) Jesaitis, A. J.; Franklin, Michael J.; Berglund, Deborah L.; Sasaki, Maiko; Lord, Connie I.; Bleazard, Justin Brock; Duffy, James E.; Beyenal, Haluk; Lewandowski, Zbigniew
    Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on tissues and other surfaces. We characterized the interaction of purified human neutrophils with P. aeruginosa, growing in biofilms, with regard to morphology, oxygen consumption, phagocytosis, and degranulation. Scanning electron and confocal laser microscopy indicated that the neutrophils retained a round, unpolarized, unstimulated morphology when exposed to P. aeruginosa PAO1 biofilms. However, transmission electron microscopy demonstrated that neutrophils, although rounded on their dorsal side, were phagocytically active with moderate membrane rearrangement on their bacteria-adjacent surfaces. The settled neutrophils lacked pseudopodia, were impaired in motility, and were enveloped by a cloud of planktonic bacteria released from the biofilms. The oxygen consumption of the biofilm/neutrophil system increased 6- and 8-fold over that of the biofilm alone or unstimulated neutrophils in suspension, respectively. H(2)O(2) accumulation was transient, reaching a maximal measured value of 1 micro M. Following contact, stimulated degranulation was 20-40% (myeloperoxidase, beta-glucuronidase) and 40-80% (lactoferrin) of maximal when compared with formylmethionylleucylphenylalanine plus cytochalasin B stimulation. In summary, after neutrophils settle on P. aeruginosa biofilms, they become phagocytically engorged, partially degranulated, immobilized, and rounded. The settling also causes an increase in oxygen consumption of the system, apparently resulting from a combination of a bacterial respiration and escape response and the neutrophil respiratory burst but with little increase in the soluble concentration of H(2)O(2). Thus, host defense becomes compromised as biofilm bacteria escape while neutrophils remain immobilized with a diminished oxidative potential.
  • Thumbnail Image
    Item
    Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin
    (2003-01) Walters, Marshall C., III; Roe, Frank L.; Bugnicourt, Amandine; Franklin, Michael J.; Stewart, Philip S.
    The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 micro g of tobramycin ml(-1)or 1.0 micro g of ciprofloxacin ml(-1). After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 +/- 0.18 for tobramycin and 1.42 +/- 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 micro m into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
  • Thumbnail Image
    Item
    Evidence that the AlgI/AlgJ gene cassette, required for O-acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer
    (2004-07) Franklin, Michael J.; Douthit, Stephanie Ann; McClure, Marcella A.
    Pseudomonas aeruginosa strains, isolated from chronically infected patients with cystic fibrosis, produce the O-acetylated extracellular polysaccharide, alginate, giving these strains a mucoid phenotype. O acetylation of alginate plays an important role in the ability of mucoid P. aeruginosa to form biofilms and to resist complement-mediated phagocytosis. The O-acetylation process is complex, requiring a protein with seven transmembrane domains (AlgI), a type II membrane protein (AlgJ), and a periplasmic protein (AlgF). The cellular localization of these proteins suggests a model wherein alginate is modified at the polymer level after the transport of O-acetyl groups to the periplasm. Here, we demonstrate that this mechanism for polysaccharide esterification may be common among bacteria, since AlgI homologs linked to type II membrane proteins are found in a variety of gram-positive and gram-negative bacteria. In some cases, genes for these homologs have been incorporated into polysaccharide biosynthetic operons other than for alginate biosynthesis. The phylogenies of AlgI do not correlate with the phylogeny of the host bacteria, based on 16S rRNA analysis. The algI homologs and the gene for their adjacent type II membrane protein present a mosaic pattern of gene arrangement, suggesting that individual components of the multigene cassette, as well as the entire cassette, evolved by lateral gene transfer. AlgJ and the other type II membrane proteins, although more diverged than AlgI, contain conserved motifs, including a motif surrounding a highly conserved histidine residue, which is required for alginate O-acetylation activity by AlgJ. The AlgI homologs also contain an ordered series of motifs that included conserved amino acid residues in the cytoplasmic domain CD-4; the transmembrane domains TM-C, TM-D, and TM-E; and the periplasmic domain PD-3. Site-directed mutagenesis studies were used to identify amino acids important for alginate O-acetylation activity, including those likely required for (i) the interaction of AlgI with the O-acetyl precursor in the cytoplasm, (ii) the export of the O-acetyl group across the cytoplasmic membrane, and (iii) the transfer of the O-acetyl group to a periplasmic protein or to alginate. These results indicate that AlgI belongs to a family of membrane proteins required for modification of polysaccharides and that a mechanism requiring an AlgI homolog and a type II membrane protein has evolved by lateral gene transfer for the esterification of many bacterial extracellular polysaccharides.
  • Thumbnail Image
    Item
    Stratified growth in Pseudomonas aeruginosa biofilms
    (2004-10) Werner, Erin M.; Roe, Frank L.; Bugnicourt, Amandine; Franklin, Michael J.; Heydorn, Arne; Molin, Søren; Pitts, Betsey; Stewart, Philip S.
    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct carried an isopropyl-ß-D-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp1 promoter. Both GFP reporters indicated that active protein synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 µm wide in colony biofilms and 30 µm wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 µm into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain active, growing cells, they can also harbor large numbers of cells that are inactive and not growing.
  • Thumbnail Image
    Item
    Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms
    (2005-06) Sarkisova, S. A.; Patrauchan, Marianna A.; Berglund, Deborah L.; Nivens, David E.; Franklin, Michael J.
    Pseudomonas aeruginosa colonizes the pulmonary tissue of patientswith cystic fibrosis (CF), leading to biofilm-associated infections.The pulmonary fluid of CF patients usually contains elevated concentrations of cations and may contain the P. aeruginosa redox-active pigment pyocyanin, which is known to disrupt calcium homeostasis of host cells. Since divalent cations are important bridging ions for bacterial polysaccharides and since they may play regulatory roles in bacterial gene expression, we investigated the effect of calcium ions on the extracellular matrix constituents of P. aeruginosa biofilms. For mucoid strain P. aeruginosa FRD1,calcium addition (1.0 and 10 mM as CaCl2) resulted in biofilmsthat were at least 10-fold thicker than biofilms without added calcium. Scanning confocal laser microscopy showed increased spacing between cells for the thick biofilms, and Fourier transform infrared spectroscopy revealed that the material between cells is primarily alginate. An algD transcriptional reporter demonstrated that calcium addition caused an eightfold increase in alg gene expression in FRD1 biofilms. Calcium addition also resulted in increased amounts of three extracellular proteases (AprA, LasB, and PrpL). Immunoblots of the biofilm extracellular material established that AprA was harbored within the biofilm extracellular matrix. An aprA deletion mutation and a mutation in gene for a putative P. aeruginosa calmodulin-like protein did not significantly affect calcium-induced biofilm structure. Two-dimensional gel electrophoresis showed increased amounts of phenazine biosynthetic proteins in FRD1 biofilms and in calcium-amended planktonic cultures. Spectrochemical analyses showed that the calcium addition causes a three- to fivefold increase in pyocyanin production. These results demonstrate that calcium addition affects the structure and extracellular matrix composition of mucoid P. aeruginosa biofilms, through increased expression and stability of bacterial extracellular products. The calcium-induced extracellular matrix of mucoid P. aeruginosa consists primarily of the virulence factor alginate and also harbors extracellular proteases and perhaps pyocyanin, a biomolecule that may further disrupt cellular calcium levels.
  • Thumbnail Image
    Item
    Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments
    (2007-11) Clark, M. E.; Edelmann, Richard E.; Duley, Matt L.; Wall, Judy D.; Fields, Matthew W.
    Desulfovibrio vulgaris Hildenborough is a gram-negative sulfate-reducing bacterium (SRB), and the physiology of SRBs can impact many anaerobic environments including radionuclide waste sites, oil reservoirs and metal pipelines. In an attempt to understand D. vulgaris as a population that can adhere to surfaces, D. vulgaris cultures were grown in a defined medium and analysed for carbohydrate production, motility and biofilm formation. Desulfovibrio vulgaris wild-type cells had increasing amounts of carbohydrate into stationary phase and approximately half of the carbohydrate remained internal. In comparison, a mutant that lacked the 200 kb megaplasmid, strain DeltaMP, produced less carbohydrate and the majority of carbohydrate remained internal of the cell proper. To assess the possibility of carbohydrate re-allocation, biofilm formation was investigated. Wild-type cells produced approximately threefold more biofilm on glass slides compared with DeltaMP; however, wild-type biofilm did not contain significant levels of exopolysaccharide. In addition, stains specific for extracellular carbohydrate did not reveal polysaccharide material within the biofilm. Desulfovibrio vulgaris wild-type biofilms contained long filaments as observed with scanning electron microscopy (SEM), and the biofilm-deficient DeltaMP strain was also deficient in motility. Biofilms grown directly on silica oxide transmission electron microscopy (TEM) grids did not contain significant levels of an exopolysaccharide matrix when viewed with TEM and SEM, and samples stained with ammonium molybdate also showed long filaments that resembled flagella. Biofilms subjected to protease treatments were degraded, and different proteases that were added at the time of inoculation inhibited biofilm formation. The data indicated that D. vulgaris did not produce an extensive exopolysaccharide matrix, used protein filaments to form biofilm between cells and silica oxide surfaces, and the filaments appeared to be flagella. It is likely that D. vulgaris used flagella for more than a means of locomotion to a surface, but also used flagella, or modified flagella, to establish and/or maintain biofilm structure.
  • Thumbnail Image
    Item
    In situ bioreduction of uranium (VI) in situ and stability of immobilized uranium: Impact of dissolved oxygen
    (2007-08) Wu, Wei-Min; Carley, Jack; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chiachi; Kelly, Shelly D.; Ruan, Chuanmin; Wu, Liyou; Nostrand, Joy V.; Gentry, Terry J.; Lowe, K. A.; Mehlhorn, T. L.; Carroll, Sue L.; Luo, Wensui; Fields, Matthew W.; Gu, Baohua; Watson, David B.; Kemner, K. M.; Marsh, Terence; Tiedje, J. M.; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Phil M.; Criddle, Craig S.
    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 microM uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2-day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agengy maximum contaminant limit (MCL) for drinking water (< 30/microg L(-1) or 0.126 microM). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L(-1)) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from < 0.13 to 2.0 microM at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. Atthe completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 microM. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.
  • Thumbnail Image
    Item
    In silico approaches to study mass and energy flows in microbial consortia: A syntrophic case study
    (2009) Taffs, Reed L.; Aston, John E.; Brileya, Kristen A.; Jay, Zackary J.; Klatt, Christian G.; McGlynn, Shawn E.; Inskeep, William P.; Ward, David M.; Carlson, Ross P.
    Background: Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange.ResultsThe in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions.Conclusion: The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational burden, the nested analysis approach permits greater scalability at the cost of more user intervention through multiple rounds of pathway analysis. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1752-0509/3/114
  • Thumbnail Image
    Item
    Sampling and quantification of biofilms in food processing and other environments
    (2009) Nivens, David E.; Co, B. M.; Franklin, Michael J.
    In the food industry, assessment of food contact surfaces is necessary to determine whether equipment is properly cleaned and/or sanitized and whether living problematic microorganisms are present. Existing quantitative detection technologies are limited by the inability to directly detect living cells in sporadically dispersed biofilms on large surface areas. Thus, precise and accurate sampling strategies must be coupled with detection technology. This chapter discusses sampling methods and standard (e.g., plating and ATP-bioluminescence) and emerging (e.g., spectrometry, immunosensor, and nucleic acid-based) quantitative techniques to detect biofilms on food contact surfaces with a survey of function, analytical performance, and limitations.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.