Mathematical Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/48

Mathematical research at MSU is focused primarily on related topics in pure and applied mathematics. Research programs complement each other and are often applied to problems in science and engineering. Research in statistics encompasses a broad range of theoretical and applied topics. Because the statisticians are actively engaged in interdisciplinary work, much of the statistical research is directed toward practical problems. Mathematics education faculty are active in both qualitative and quantitative experimental research areas. These include teacher preparation, coaching and mentoring for in-service teachers, online learning and curriculum development.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Quorum sensing inhibition as a promising method to control biofilm growth in metalworking fluids
    (2019-04) Ozcan, Safiye S.; Dieser, Markus; Parker, Albert E.; Balasubramanian, Narayanaganesh; Foreman, Christine M.
    Microbial contamination in metalworking systems is a critical problem. This study determined the microbial communities in metalworking fluids (MWFs) from two machining shops and investigated the effect of quorum sensing inhibition (QSI) on biofilm growth. In both operations, biofilm-associated and planktonic microbial communities were dominated by Pseudomonadales (60.2–99.7%). Rapid recolonization was observed even after dumping spent MWFs and meticulous cleaning. Using Pseudomonas aeruginosa PAO1 as a model biofilm organism, patulin (40 µM) and furanone C-30 (75 µM) were identified as effective QSI agents. Both agents had a substantially higher efficacy compared to α-amylase (extracellular polymeric substance degrading enzyme) and reduced biofilm formation by 63% and 76%, respectively, in MWF when compared to untreated controls. Reduced production of putatively identified homoserine lactones and quinoline in MWF treated with QS inhibitors support the effect of QSI on biofilm formation. The results highlight the effectiveness of QSI as a potential strategy to eradicate biofilms in MWFs.
  • Thumbnail Image
    Item
    Dynamic processing of DOM: Insight from exometabolomics, fluorescence spectroscopy, and mass spectrometry
    (2018-06) Smith, Heidi J.; Tigges, Michelle M.; D'Andrilli, Juliana; Parker, Albert E.; Bothner, Brian; Foreman, Christine M.
    Dissolved organic matter (DOM) in freshwater environments is an important source of organic carbon, supporting bacterial respiration. Frozen environments cover vast expanses of our planet, with glaciers and ice-sheets storing upwards of 6 petagrams of organic carbon. It is generally believed that DOM liberated from ice stimulates downstream environments. If true, glacial DOM is an important component of global carbon cycling. However, coupling the release of DOM to microbial activity is challenging due to the molecular complexity of DOM and the metabolic connectivity within microbial communities. Using a single environmentally relevant organism, we demonstrate that processing of compositionally diverse DOM occurs, but, even though glacially derived DOM is chemically labile, it is unable to support sustained respiration. In view of projected changes in glacier DOM export, these findings imply that biogeochemical impacts on downstream environments will depend on the reactivity and heterogeneity of liberated DOM, as well as the timescale.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.