Earth Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/43

By virtue of our outstanding location in the scenic and rugged mountains of southwest Montana, Earth Science students have many opportunities to participate in field trips that will facilitate the study of earth processes, earth resources, earth history, and environments that people have modified. These field trips are an integral part of many courses, as well as extracurricular activities sponsored by the department. Fieldwork is a very important component of our instructional programs at both the undergraduate and graduate levels.Because of the research conducted by faculty in the department, an undergraduate student may have the opportunity to work on active research projects. In particular, we offer the opportunity to do a "Senior Thesis" to our top students in each senior class. The senior thesis enables a student to work on an actual research project under the supervision of a faculty member, write a research report (a mini-thesis), and present the results at a professional conference. This is excellent preparation for graduate school and/or the workplace. Our Master's theses frequently involve field-testing of state-of-the-art hypotheses proposed elsewhere, as well as formulation of the next generation of hypotheses, which will shape our disciplines in the decades to come. Most Master's thesis work in the Department is published in the peer-reviewed professional literature after presentation at regional or national professional meetings.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Microstructural and crystallographic evolution of palaeognath (Aves) eggshells
    (eLife Sciences Publications, Ltd, 2023-01) Choi, Seung; Hauber, Mark E.; Legendre, Lucas J.; Kim, Noe-Heon; Lee, Yuong-Nam; Varricchio, David J.
    The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).
Copyright (c) 2002-2022, LYRASIS. All rights reserved.