Ecology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44
The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe.
Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.
Browse
4 results
Search Results
Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.Item Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana(2019-01) Delphia, Casey M.; Griswold, Terry; Reese, Elizabeth G.; O'Neill, Kevin M.; Burkle, Laura A.Background: Over three years (2013-2015), we sampled bees using nets and bowl traps on four diversified vegetable farms in Gallatin County, Montana, USA, as part of a study evaluating the use of wildflower strips for supporting wild bees and crop pollination services on farmlands (Delphia et al. In prep). We document 202 species and morphospecies from 32 genera within five families, of which 25 species represent the first published state records for Montana. This study increases our overall understanding of the distribution of wild bee species associated with agroecosystems of the northern US Rockies, which is important for efforts aimed at conserving bee biodiversity and supporting sustainable crop pollination systems on farmlands. New information: We provide a species list of wild bees associated with diversified farmlands in Montana and increase the number of published bee species records in the state from 374 to at least 399. The list includes new distributional records for 25 wild bee species, including two species that represent considerable expansions of their known ranges, Lasioglossum (Dialictus) clematisellum (Cockerell 1904) with previously published records from New Mexico, Arizona, California and Utah and Melissodes (Eumelissodes) niveus Robertson 1895 which was reported to range from New York to Minnesota and Kansas, south to North Carolina, Alabama and Mississippi.Item A dual role for farmlands: food security and pollinator conservation(2017-07) Burkle, Laura A.; Delphia, Casey M.; O'Neill, Kevin M.1. We briefly review current understanding of wild pollinators and pollination services on farmlands. 2. We consider how concepts in plant ecology - community assembly and functional trait diversity - may be applied to create diverse, wild pollinator communities across scales in agroecosystems. 3. We also make recommendations for best practices to enhance pollination services and create more sustainable food production systems under changing environmental conditions, including creating greater landscape connectivity, embracing pollinator dynamics, and providing incentives and other motivations to support these practices. 4. Synthesis. We highlight the opportunity for agricultural lands to serve a dual role for both food production and pollinator conservation, and conclude by posing unanswered questions and top priorities for future studies.Item Temporal and density dependent impacts of an invasive plant on pollinators and pollination services to a native plant(2016-02) Herron-Sweet, Christina R.; Lehnhoff, Erik A.; Burkle, Laura A.; Littlefield, Jeffrey L.; Mangold, Jane M.Pollinators and pollination services are under threat globally, and invasive plants have been implicated in their decline. Results of previous studies suggest that consequences of invasion for pollinators and plant–pollinator interactions are context specific. Investigating factors such as the density of an invasive plant and its phenology may provide a nuanced understanding of invasive species impacts. We conducted a 2-yr study in Montana to investigate how local pollinator abundance, richness, community composition, and visitation patterns varied with invasive Centaura stoebe density and phenology, and whether C. stoebe altered the reproduction of a co-flowering native plant, Heterotheca villosa, through changes in pollinator visitation. In an observational study, we found that during its peak bloom in August, Centaurea stoebe provided abundant floral resources to late-season pollinators. However, prior to C. stoebe bloom, native floral density and pollinator abundance and richness of these plots were lower compared to plots where C. stoebe was low or absent. Pollinator community composition in plots without C. stoebe was different compared to plots with C. stoebe (both high and low C. stoebe density), and these differences in pollinator composition strongly depended on the time of season. In an experimental study, we found that there was little evidence of competition between C. stoebe and H. villosa for pollinators at low relative densities of C. stoebe. Using experimental pollen supplementation, we observed no evidence of pollen limitation of seed set in H. villosa with increasing density of experimentally added C. stoebe. Our results suggest that the impact of an invasive plant on pollinators and plant–pollinator interactions depends on the relative density of the invasive plant and the timing of its bloom. Differences in pollinator visitation patterns over the growing season suggest that although C. stoebe provides abundant resources to late-season pollinators, displacement of native plants at high C. stoebe density may indirectly harm pollinators that are active before C. stoebe blooms or that prefer native plants. Based on our results, restricting C. stoebe to low densities may help mitigate negative repercussions to native plant reproduction and may even be beneficial to some pollinators.