Ecology

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44

The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe. Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Female Weddell seals show flexible strategies of colony attendance related to varying environmental conditions
    (2015-02) Rotella, Jay J.; Chambert, T. C.; Garrott, Robert A.
    Many animal life cycles involve movements among different habitats to fulfill varying resource demands. There are inherent costs associated with such movements, and the decision to leave or stay at a given location ought to be motivated by the benefits associated with potential target habitats. Because movement patterns, especially those associated with reproduction, can have important implications for the success (survival, reproduction) of individual animals, and therefore a population's dynamics, it is important to identify and understand their sources of variation (environmental and individual). Here, using a mark–recapture, multistate modeling approach, we investigated a set of a priori hypotheses regarding sources and patterns of variation in breeding-colony attendance for Weddell seal (Leptonychotes weddellii) females on sabbatical from pup production. For such females, colony attendance might be motivated by predation avoidance and positive social interactions related to reproduction, but some costs, such as reduced foraging opportunities or aggressive interactions with conspecifics, might also exist. We expected these benefits and costs to vary with a female's condition and the environment. Results revealed that the probability of being absent from colonies was higher (1) in years when the extent of local sea ice was larger, (2) for the youngest and oldest individuals, and (3) for females with less reproductive experience. We also found substantial levels of residual individual heterogeneity in these rates. Based on our a priori predictions, we postulate that the decision to attend breeding colonies or not is directly influenced by an individual's physiological condition, as well as by the ice-covered distance to good foraging areas, availability of predator-free haul-out sites, and the level of negative interactions with conspecifics inside colonies. Our results support the idea that in iteroparous species, and colonial animals in particular, seasonal and temporary movements from/to reproductive sites represent flexible behavioral strategies that can play an important role in coping with environmental variability.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.