Ecology

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44

The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe. Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Earlier spring snowmelt drives arrowleaf balsamroot phenology in montane meadow
    (Wiley, 2022-08) Durney, J. Simone; Engel, Arden; Debinski, Diane M.; Burkle, Laura A.
    Climate change is shifting phenology globally, altering when and how species respond to environmental cues such as temperature and the timing of snowmelt. These shifts may result in phenological mismatches among interacting species, creating cascading effects on community and ecosystem dynamics. Using passive warming structures and snow removal, we examined how experimentally increased temperatures, earlier spring snowmelt, and the poorly understood interaction between warming and earlier spring snowmelt affected flower onset, flowering duration, and maximum floral display of the spring-flowering montane species, arrowleaf balsamroot (Balsamorhiza sagittata), over a 7-year period. Additionally, potential cumulative effects of treatments were evaluated over the study duration. The combination of heating with snow removal led to earlier flower onset, extended flowering duration, and increased maximum floral display. While there was year-to-year variation in floral phenology, the effect of heating with snow removal on earlier onset and maximum floral display strengthened over time. This suggests that short-term studies likely underestimate the potential for climate change to influence phenological plant traits. Overall, this research indicates that B. sagittata's flowering onset responded more strongly to snow removal than to heating, but the combination of heating with snow removal allowed plants to bloom earlier, longer, and more profusely, providing more pollinator resources in spring. If warming and early snowmelt cause similar responses in other plant species, these patterns could mitigate phenological mismatches with pollinators by providing a wider window of time for interaction and resiliency in the face of change. This example demonstrates that a detailed understanding of how spring-flowering plants respond to specific aspects of predicted climatic scenarios will improve our understanding of the effects of climate change on native plant–pollinator interactions in montane ecosystems. Studies like this help elucidate the long-term physiological effects of climate-induced stressors on plant phenology in long-lived forbs.
  • Thumbnail Image
    Item
    Warming temperatures affect meadow‐wide nectar resources, with implications for plant–pollinator communities
    (Wiley, 2022-07) McCombs, Audrey L.; Debinski, Diane M.; Reinhardt, Keith; Germino, Matthew J.; Caragea, Petrutza
    Nectar production may be a point of sensitivity that can help link primary and secondary trophic responses to climate shifts, and is therefore important to our understanding of ecosystem responses. We evaluated the nectar response of two widespread native forbs, Balsamorhiza sagittata and Eriogonum umbellatum, to experimental warming in a high-elevation sagebrush meadow in the Teton Range, WY, USA, over two years, 2015 and 2016. Warming treatments reduced the occurrence of nighttime freezing and nectar volume but increased sugar concentration in nectar in both species in both years. Warming effects were also evident in a consistent increase in the number of flowers produced by B. sagittata. Our research suggests that warming associated with climate change has the potential to induce shifts in the nectar-feeding community by changing nectar characteristics such as volume and sugar concentration to which nectar feeders are adapted.
  • Thumbnail Image
    Item
    Earlier spring snowmelt drives arrowleaf balsamroot phenology in montane meadows
    (Wiley, 2022-08) Durney, J. Simone; Engel, Arden; Debinski, Diane M.; Burkle, Laura A.
    Climate change is shifting phenology globally, altering when and how species respond to environmental cues such as temperature and the timing of snowmelt. These shifts may result in phenological mismatches among interacting species, creating cascading effects on community and ecosystem dynamics. Using passive warming structures and snow removal, we examined how experimentally increased temperatures, earlier spring snowmelt, and the poorly understood interaction between warming and earlier spring snowmelt affected flower onset, flowering duration, and maximum floral display of the spring-flowering montane species, arrowleaf balsamroot (Balsamorhiza sagittata), over a 7-year period. Additionally, potential cumulative effects of treatments were evaluated over the study duration. The combination of heating with snow removal led to earlier flower onset, extended flowering duration, and increased maximum floral display. While there was year-to-year variation in floral phenology, the effect of heating with snow removal on earlier onset and maximum floral display strengthened over time. This suggests that short-term studies likely underestimate the potential for climate change to influence phenological plant traits. Overall, this research indicates that B. sagittata's flowering onset responded more strongly to snow removal than to heating, but the combination of heating with snow removal allowed plants to bloom earlier, longer, and more profusely, providing more pollinator resources in spring. If warming and early snowmelt cause similar responses in other plant species, these patterns could mitigate phenological mismatches with pollinators by providing a wider window of time for interaction and resiliency in the face of change. This example demonstrates that a detailed understanding of how spring-flowering plants respond to specific aspects of predicted climatic scenarios will improve our understanding of the effects of climate change on native plant–pollinator interactions in montane ecosystems. Studies like this help elucidate the long-term physiological effects of climate-induced stressors on plant phenology in long-lived forbs.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.