Ecology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44
The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe.
Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.
Browse
10 results
Search Results
Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.Item CLIMATE CHANGE AND HUMAN HEALTH IN MONTANA: A Special Report of the Montana Climate Assessment(Montana Institute on Ecosystems, 2020-12) Adams, Alexandra K.; Byron, Robert; Maxwell, Bruce D.; Higgins, Susan; Eggers, Margaret; Byron, Lori; Whitlock, CathyThe purpose of this assessment is to a) present understandable, science-based, Montana-specific information about the impacts of climate change on the health of Montanans; and b) describe how our healthcare providers, state leaders, communities, and individuals can best prepare for and reduce those impacts in the coming decades. This assessment draws from, and is an extension to, the 2017 Montana Climate Assessment (MCA1) (Whitlock et al. 2017), which provides the first detailed analysis of expected impacts to Montana’s water, forests, and agriculture from climate change. MCA explains historical, current, and prospective climate trends for the state based on the best-available science. The 2017 Montana Climate Assessment did not address the impact of climate change on the health of Montanans. This special report of the MCA fills that important knowledge gap; it represents a collaboration between climate scientists and Montana’s healthcare community and is intended to help Montanans minimize the impacts of climate on their health.Item Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana(2019-01) Delphia, Casey M.; Griswold, Terry; Reese, Elizabeth G.; O'Neill, Kevin M.; Burkle, Laura A.Background: Over three years (2013-2015), we sampled bees using nets and bowl traps on four diversified vegetable farms in Gallatin County, Montana, USA, as part of a study evaluating the use of wildflower strips for supporting wild bees and crop pollination services on farmlands (Delphia et al. In prep). We document 202 species and morphospecies from 32 genera within five families, of which 25 species represent the first published state records for Montana. This study increases our overall understanding of the distribution of wild bee species associated with agroecosystems of the northern US Rockies, which is important for efforts aimed at conserving bee biodiversity and supporting sustainable crop pollination systems on farmlands. New information: We provide a species list of wild bees associated with diversified farmlands in Montana and increase the number of published bee species records in the state from 374 to at least 399. The list includes new distributional records for 25 wild bee species, including two species that represent considerable expansions of their known ranges, Lasioglossum (Dialictus) clematisellum (Cockerell 1904) with previously published records from New Mexico, Arizona, California and Utah and Melissodes (Eumelissodes) niveus Robertson 1895 which was reported to range from New York to Minnesota and Kansas, south to North Carolina, Alabama and Mississippi.Item Opportunities and Trade-offs among BECCS and the Food, Water, Energy, Biodiversity, and Social Systems Nexus at Regional Scales(2018-01) Stoy, Paul C.; Ahmed, Selena; Jarchow, Meghann; Rashford, Benjamin; Swanson, David; Albeke, Shannon; Bromley, Gabriel T.; Brookshire, E. N. Jack; Dixon, Mark D.; Haggerty, Julia Hobson; Miller, Perry R.; Peyton, Brent M.; Royem, Alisa; Spangler, Lee H.; Straub, Crista; Poulter, BenjaminCarbon dioxide must be removed from the atmosphere to limit climate change to 2°C or less. The integrated assessment models used to develop climate policy acknowledge the need to implement net negative carbon emission strategies, including bioenergy with carbon capture and storage (BECCS), to meet global climate imperatives. The implications of BECCS for the food, water, energy, biodiversity, and social systems (FWEBS) nexus at regional scales, however, remain unclear. Here, we present an interdisciplinary research framework to examine the trade-offs as well as the opportunities among BECCS scenarios and FWEBS on regional scales using the Upper Missouri River Basin (UMRB) as a case study. We describe the physical, biological, and social attributes of the UMRB, and we use grassland bird populations as an example of how biodiversity is influenced by energy transitions, including BECCS. We then outline a "conservation" BECCS strategy that incorporates societal values and emphasizes biodiversity conservation.Item Hitching a ride: Seed accrual rates on different types of vehicles(2017-12) Rew, Lisa J.; Brummer, Tyler J.; Pollnac, Fredric W.; Larson, Christian D.; Taylor, Kimberley T.; Taper, Mark L.; Fleming, Joseph D.; Balbach, Harold E.Human activities, from resource extraction to recreation, are increasing global connectivity, especially to less-disturbed and previously inaccessible places. Such activities necessitate road networks and vehicles. Vehicles can transport reproductive plant propagules long distances, thereby increasing the risk of invasive plant species transport and dispersal. Subsequent invasions by less desirable species have significant implications for the future of threatened species and habitats. The goal of this study was to understand vehicle seed accrual by different vehicle types and under different driving conditions, and to evaluate different mitigation strategies. Using studies and experiments at four sites in the western USA we addressed three questions: How many seeds and species accumulate and are transported on vehicles? Does this differ with vehicle type, driving surface, surface conditions, and season? What is our ability to mitigate seed dispersal risk by cleaning vehicles? Our results demonstrated that vehicles accrue plant propagules, and driving surface, surface conditions, and season affect the rate of accrual: on- and off-trail summer seed accrual on all-terrain vehicles was 13 and 3508 seeds km-1, respectively, and was higher in the fall than in the summer. Early season seed accrual on 4-wheel drive vehicles averaged 7 and 36 seeds km-1 on paved and unpaved roads respectively, under dry conditions. Furthermore, seed accrual on unpaved roads differed by vehicle type, with tracked vehicles accruing more than small and large 4-wheel drives; and small 4-wheel drives more than large. Rates were dramatically increased under wet surface conditions. Vehicles indiscriminately accrue a wide diversity of seeds (different life histories, forms and seed lengths); total richness, richness of annuals, biennials, forbs and shrubs, and seed length didn't differ among vehicle types, or additional seed bank samples. Our evaluation of portable vehicle wash units showed that approximately 80% of soil and seed was removed from dirty vehicles. This suggests that interception programs to reduce vehicular seed transportation risk are feasible and should be developed for areas of high conservation value, or where the spread of invasive species is of special concern.Item A dual role for farmlands: food security and pollinator conservation(2017-07) Burkle, Laura A.; Delphia, Casey M.; O'Neill, Kevin M.1. We briefly review current understanding of wild pollinators and pollination services on farmlands. 2. We consider how concepts in plant ecology - community assembly and functional trait diversity - may be applied to create diverse, wild pollinator communities across scales in agroecosystems. 3. We also make recommendations for best practices to enhance pollination services and create more sustainable food production systems under changing environmental conditions, including creating greater landscape connectivity, embracing pollinator dynamics, and providing incentives and other motivations to support these practices. 4. Synthesis. We highlight the opportunity for agricultural lands to serve a dual role for both food production and pollinator conservation, and conclude by posing unanswered questions and top priorities for future studies.Item Unraveling Ecosystem Responses to Climate Change on the Antarctic Continent through Long-Term Ecological Research(2016-10) Priscu, John C."Although climate change is occurring on a global scale, its ecological impacts are often specific, and they vary from region to region. Climate changes in polar regions are amplified, making these high-latitude areas sentinels not only for monitoring climate variability but also for the determination of how ecosystems respond to this variability. There has been a large focus on temperature warming in the Arctic and its ramifications for geopolitics, human inhabitants, and changes in north polar ecosystems. Despite its importance in regulating our planet\'s climate, much less is known about Antarctica, the fifth-largest continent and repository of approximately 70 percent of Earth\'s freshwater. The Antarctic continent and the surrounding ocean represent coupled components that both drive and respond to climate. Remarkable changes have been observed in Antarctica over the past several decades, including the rapid collapse of ice shelves, changes in penguin populations, and extreme flooding within the polar deserts of the McMurdo Dry Valleys. Our understanding of the mechanisms behind these events is improving, but the complex interactions among the atmosphere, ocean, cryosphere, and biosphere are difficult to resolve. Changes are occurring faster than were predicted only a few years ago, and although the future trajectory remains uncertain, these changes have been projected to alter both marine and terrestrial Antarctic ecosystem structure and function. Climate variability and ecosystem response are best understood by long-term monitoring. The National Science Foundation currently supports Long Term Ecological Research (LTER) sites in Antarctica at Palmer Station (PAL) on the western coast of the Antarctic Peninsula and in the McMurdo Dry Valleys (MCM) of Southern Victoria Land. These projects have been collecting climate and ecosystem data for more than 20 years and have shown clearly that ecosystem structure and function are tightly coupled with changes in climate, in large part because of climate-induced alterations in ice cover. Despite the disparate nature of these ecosystems (i.e., marine vs. polar desert), there are fundamental similarities in the way that they respond to climate. This issue includes three Overview articles that integrate data from both Antarctic LTER sites to show how these ecosystems respond to climate variability. Fountain and colleagues present information on the role of the southern annular mode on continental-scale climate variability and highlight the sensitivity of the PAL and MCM ecosystems to discrete climate events. Obryk and colleagues show that the extent and thickness of marine (PAL) and lake (MCM) ice covers are inextricably linked to both short- and long-term climate variation and that this variation is a major driver of biological production. Bowman and colleagues show that the differences in the sources of organic carbon between these sites drive differences in microbial community structure and function, as well as different ecosystem responses to climate events. The integration of long-term data presented in these articles provides a starting point for our understanding of the cascade of environmental consequences related to rapid climate change on the Antarctic continent."Item Microbial Community Dynamics in Two Polar Extremes: The Lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem(2016-10) Bowman, Jeff S.; Oceanog, La Jolla; Vick-Majors, Trista J.; Morgan-Kiss, Rachael M.; Takacs-Vesbach, Cristina; Ducklow, Hugh W.; Priscu, John C.The Palmer and McMurdo LTER (Long Term Ecological Research) sites represent climatic and trophic extremes on the Antarctic continent. Despite these differences, the microbial components of the McMurdo lake and Palmer marine ecosystems share fundamental characteristics, including the production of organic carbon via autotrophy and its assimilation via heterotrophy. We leveraged 20+ years of observations at the Palmer and McMurdo LTERs to identify key differences in microbial ecosystem dynamics between these sites. Although the relationships between fundamental biological parameters, including autotrophy and heterotrophy, are different between these sites, recent climate events have influenced the coupling of these parameters. We hypothesize that for the lakes of the McMurdo LTER, decoupling is largely driven by physical processes, whereas in the coastal Antarctic, it is largely driven by biological processes. We combined this hypothesis with a new analysis of microbial community and metabolic structure to develop novel conceptual microbial food-web models.Item Temporal and density dependent impacts of an invasive plant on pollinators and pollination services to a native plant(2016-02) Herron-Sweet, Christina R.; Lehnhoff, Erik A.; Burkle, Laura A.; Littlefield, Jeffrey L.; Mangold, Jane M.Pollinators and pollination services are under threat globally, and invasive plants have been implicated in their decline. Results of previous studies suggest that consequences of invasion for pollinators and plant–pollinator interactions are context specific. Investigating factors such as the density of an invasive plant and its phenology may provide a nuanced understanding of invasive species impacts. We conducted a 2-yr study in Montana to investigate how local pollinator abundance, richness, community composition, and visitation patterns varied with invasive Centaura stoebe density and phenology, and whether C. stoebe altered the reproduction of a co-flowering native plant, Heterotheca villosa, through changes in pollinator visitation. In an observational study, we found that during its peak bloom in August, Centaurea stoebe provided abundant floral resources to late-season pollinators. However, prior to C. stoebe bloom, native floral density and pollinator abundance and richness of these plots were lower compared to plots where C. stoebe was low or absent. Pollinator community composition in plots without C. stoebe was different compared to plots with C. stoebe (both high and low C. stoebe density), and these differences in pollinator composition strongly depended on the time of season. In an experimental study, we found that there was little evidence of competition between C. stoebe and H. villosa for pollinators at low relative densities of C. stoebe. Using experimental pollen supplementation, we observed no evidence of pollen limitation of seed set in H. villosa with increasing density of experimentally added C. stoebe. Our results suggest that the impact of an invasive plant on pollinators and plant–pollinator interactions depends on the relative density of the invasive plant and the timing of its bloom. Differences in pollinator visitation patterns over the growing season suggest that although C. stoebe provides abundant resources to late-season pollinators, displacement of native plants at high C. stoebe density may indirectly harm pollinators that are active before C. stoebe blooms or that prefer native plants. Based on our results, restricting C. stoebe to low densities may help mitigate negative repercussions to native plant reproduction and may even be beneficial to some pollinators.Item Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size(2015-07) O'Neill, Kevin M.; Delphia, Casey M.; Pitts-Singer, Theresa L.During the nesting season, adult females of the solitary bee Megachile rotundata (F.) face considerable physical and energy demands that could include increasing wear and tear on their bodies and decreasing lipid reserves. Consequently, their reproductive performance may be affected not only by extrinsic factors (e.g., weather and floral resource availability), but intrinsic changes in their own bodies. Because of the potential fitness effects of seasonal changes in body condition, our objectives were to determine how wing wear, lipid reserves, and oocyte sizes vary during nesting seasons, beginning when females emerge as adults. As nesting progressed, females in two populations experienced a steady increase in wing wear, which is known to reduce foraging efficiency and increase risk of mortality in other bees. Soon after emergence, females exhibited sharp declines in lipid content which remained low for the remainder of the season. Newly-emerged females ingested pollen, an activity known to be correlated with the initiation of egg maturation in this species. Additionally, the early summer drop in lipid stores was correlated with an increase in the size of the oocytes carried. However, by ∼6 weeks after emergence, oocytes began to decrease in length and volume, perhaps due to nutrient deficiencies related to loss of stored lipids. Our results suggest management of M. rotundata should include rearing bees at temperatures that maximize stored lipid reserves in adults and timing bee release so that significant pollen resources are available for both adults and offspring.