Ecology

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44

The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe. Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis
    (2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.
    Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.
  • Thumbnail Image
    Item
    Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination
    (2017-08) Glenny, William; Cavigli, Ian; Daughenbaugh, Katie F.; Radford, Rosemarie; Kegley, Susan E.; Flenniken, Michelle L.
    Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.