Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Updating the Upper Cretaceous (Campanian) Two Medicine Formation of Montana: Lithostratigraphic revisions, new CA-ID-TIMS U-Pb ages, and a calibrated framework for dinosaur occurrences
    (Geological Society of America, 2024-07) Rogers, Raymond R.; Horner, John R.; Ramezani, Jahandar; Roberts, Eric M.; Carricchio, David J.
    The Campanian Two Medicine Formation of northwestern Montana, USA, is richly fossiliferous, and discoveries made within the unit over the past century have greatly advanced our appreciation of dinosaur paleobiology and evolution. Previously undifferentiated from a lithostratigraphic perspective, the formation is now subdivided into four new members that include (from base to top) (1) the Rock City Member, (2) the Shields Crossing Member, (3) the Hagans Crossing Member, and (4) the Flag Butte Member. These new formal units and their associated fossil occurrences are also now included in an age model founded on eight high-resolution chemical abrasion−isotope dilution−thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages. New age data confirm that the Two Medicine Formation accumulated during much of the Campanian, with deposition spanning ca. 82.4 Ma to 74.4 Ma. New age data further indicate that a major reorganization of depositional systems, marked by a shift from predominantly lacustrine to alluvial facies and accompanied by a dramatic increase in accommodation, transpired near the base of the new Flag Butte Member at ca. 76.3 Ma. This change in depositional regime correlates in age with the Judith River−Belly River discontinuity, which marks the contact between the McClelland Ferry and Coal Ridge Members in the Judith River Formation and coincides with the onset of the Bearpaw transgression in north-central Montana. The new lithostratigraphic and chronostratigraphic framework for the Two Medicine Formation serves to contextualize and calibrate the formation’s rich dinosaur fossil record, which can now be interrogated with increased clarity and precision. These results also provide ground truth for numerical models that explore the structure of the fossil record in relation to alluvial architecture and terrestrial sequence stratigraphy.
  • Thumbnail Image
    Item
    Distal spinal nerve development and divergence of avian groups
    (2020-04) Rashid, Dana J.; Bradley, Roger S.; Bailleul, Alida; Surya, Kevin; Woodward, Holly; Wu, Ping; Wu, Yun-Hsin; Menke, Douglas; Minchey, Sergio; Parrott, Ben; Bock, Samantha; Merzdorf, Christa; Narotzky, Emma; Burke, Nathan; Horner, John R.; Chapman, Susan
    The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.