Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 10 of 60
  • Thumbnail Image
    Item
    Bacterial transfer and biofilm formation in needleless connectors in a clinically simulated in vitro catheter model
    (Cambridge University Press, 2023-04) Ryder, Marcia; deLancey-Pulcini, Elinor; Parker, Albert E.; James, Garth A.
    Objective: Although needleless connectors (NCs) are widely used in clinical practice, they carry significant risk of bloodstream infection (BSI). In this study, we quantified differences in bacterial transfer and biofilm formation between various NCs. Design: Prospective, clinically simulated in vitro experimental study. Methods: We tested 20 NCs in a 5-day clinical simulation of Staphylococcus aureus inoculations onto NC septum surfaces, which were then flushed with saline and cultured for bacterial transfer. Biofilm formation was measured through destructive sampling of the connector-catheter system. Moreover, 8 NC design factors were evaluated for their influence on bacterial transfer and biofilm formation. This study was designed without a disinfection protocol to ascertain the intrinsic risk of each NC. Results: Clave Neutron and MicroClave had the lowest overall mean log density of bacteria in the flush compared to other NCs (P < .05), except there were no statistically significant differences between Clave Neutron, Microclave, SafeTouch, and SafeAccess (P ≥ .05). The amount of biofilm in the NC was positively associated with bacteria in the flush (P < .0005). Among 8 design factors, flow path was most important, with the internal cannula associated with a statistically significant 1 log reduction (LR) in bacteria in the flush (R2 = 49%) and 0.5–2 LR in the connector (R2 = 34%). All factors together best explained bacteria in the flush (R2 = 65%) and biofilm in the connector (R2 = 48%). Conclusions: Bacterial transfer and biofilm formation in the connector-catheter system varied statistically significantly between the 20 NCs, suggesting that NC choice can lower the risk of developing catheter-related BSIs.
  • Thumbnail Image
    Item
    Anti-Biofilm Efficacy of Commonly Used Wound Care Products in In Vitro Settings
    (MDPI AG, 2023-03) Regulski, Matthew; Myntti, Matthew F.; James, Garth A.
    Considering the prevalence and pathogenicity of biofilms in wounds, this study was designed to evaluate the anti-biofilm capabilities of eight commercially available wound care products using established in vitro assays for biofilms. The products evaluated included dressings with multiple delivery formats for ionic silver including nanocrystalline, gelling fibers, polyurethane (PU) foam, and polymer matrix. Additionally, non-silver-based products including an extracellular polymeric substance (EPS)-dissolving antimicrobial wound gel (BDWG), a collagenase-based debriding ointment and a fish skin-based skin substitute were also evaluated. The products were evaluated on Staphylococcus aureus and Pseudomonas aeruginosa mixed-species biofilms grown using colony drip flow reactor (CDFR) and standard drip flow reactor (DFR) methodologies. Anti-biofilm efficacy was measured by viable plate counts and confocal scanning laser microscopy (CSLM). Four of the eight wound care products tested were efficacious in inhibiting growth of new biofilm when compared with untreated controls. These four products were further evaluated against mature biofilms. BDWG was the only product that achieved greater than 2-log growth reduction (5.88 and 6.58 for S. aureus and P. aeruginosa, respectively) of a mature biofilm. Evaluating both biofilm prevention and mature biofilm disruption capacity is important to a comprehensive understanding of the anti-biofilm efficacy of wound care products.
  • Thumbnail Image
    Item
    Efficacy of Common Antiseptic Solutions Against Clinically Relevant Planktonic Microorganisms
    (SLACK, Inc., 2022-03) O'Donnell, Jeffrey A.; Wu, Mark; Cochrane, Niall H.; Belay, Elshaday; Myntti, Matthew F.; James, Garth A.; Ryan, Sean P.; Seyler, Thorsten M.
    Prosthetic joint infections (PJIs) are among the most devastating complications after joint replacement. There is limited evidence regarding the efficacy of different antiseptic solutions in reducing planktonic microorganism burden. The purpose of this study was to test the efficacy of different antiseptic solutions against clinically relevant planktonic microorganisms. We designed an experiment examining the efficacy of several antiseptic solutions against clinically relevant planktonic microorganisms in vitro. Regarding planktonic microorganisms, povidone-iodine had 99.9% or greater reduction for all microorganisms tested except for methicillin-resistant Staphylococcus aureus, which was reduced by 60.44%. Irrisept (Irrimax Corp) had 99.9% or greater reduction for all microorganisms except Staphylococcus epidermidis (98.31%) and Enterococcus faecalis (48.61%). Bactisure (Zimmer Surgical Inc) had 99.9% or greater reduction for all microorganisms tested. Various measures exist for PJI prevention, one of which is intraoperative irrigation. We tested irrigants against clinically relevant planktonic microorganisms in vitro and found significant differences in efficacy among them. Further clinical outcome data are necessary to determine whether these solutions can impact PJI in vivo. [Orthopedics. 2022;45(2):122–127.]
  • Thumbnail Image
    Item
    Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species
    (American Society for Microbiology, 2022-04) Stewart, Philip S.; Williamson, Kerry S.; Boegli, Laura; Hamerly, Timothy; White, Ben; Scott, Liam; Hu, Xiao; Mumey, Brendan M.; Franklin, Michael J.; Bothner, Brian; Vital-Lopez, Francisco G.; Wallqvist, Anders; James, Garth A.
    Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.
  • Thumbnail Image
    Item
    Noninflammatory comedones have greater diversity in microbiome and are more prone to biofilm formation than inflammatory lesions of acne vulgaris
    (Wiley, 2020-12) Loss, Manisha; Thompson, Katherine G.; Agostinho‐Hunt, Alessandra; James, Garth A.; Mongodin, Emmanuel F.; Rosenthal, Ian; Cheng, Nancy; Leung, Sherry; Chien, Anna L.; Kang, Sewon
    Background: The ability of C. acnes strains to form biofilms has been correlated with their virulence. Objective: This study examined biofilm and skin microbiota in acne patients in order to understand their role in the development of acne lesions. Methods: Thin sections of punch biopsy specimens of (1) uninflamed comedones, (2) inflammatory lesions, and (3) uninvolved adjacent skin of acne patients were examined. Epiflourescence and confocal laser scanning microscopy were used for biofilm detection, and pyrosequencing with taxonomic classification of 16s rRNA gene amplicons was used for microbiota analysis. Results: Of the 39 skin specimens from patients with mild-moderate acne (n=13) that were studied, 9 (23%) contained biofilm. Among these specimens, biofilm was most frequently detected in comedones (55.6%) and less frequently in inflammatory papules (22.2%) and uninvolved skin (22.2%). Comedones demonstrated the highest mean alpha diversity of all the lesion subtypes. The relative abundance of Staphylococcus was significantly higher in comedones (11.400% ±12.242%) compared to uninvolved skin (0.073% ±0.185%, p=0.024). Conclusions: The microenvironment of the comedone differs from that of inflammatory lesions and unaffected skin. The increased frequency of biofilm in comedones may account for the lack of host inflammatory response to these lesions.
  • Thumbnail Image
    Item
    Streptococcus mutans and actinomyces naeslundii interaction in dual-species biofilm
    (MDPI AG, 2020-01) de Oliveira, Rosa Virginia Dutra; Bonafé, Fernanda Salloume Sampaio; Spolidorio, Denise Madalena Palomari; Koga-Ito, Cristiane Yumi; de Farias, Aline Leite; Kirker, Kelly R.; James, Garth A.; Brighenti, Fernanda Lourenção
    The study of bacterial interaction between Streptococcus mutans and Actinomyces naeslundii may disclose important features of biofilm interspecies relationships. The aim of this study was to characterize—with an emphasis on biofilm formation and composition and metabolic activity—single- and dual-species biofilms of S. mutans or A. naeslundii, and to use a drip flow reactor (DFR) to evaluate biofilm stress responses to 0.2% chlorhexidine diacetate (CHX). Single- and dual-species biofilms were grown for 24 h. The following factors were evaluated: cell viability, biomass and total proteins in the extracellular matrix, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide—“XTT”—reduction and lactic acid production. To evaluate stress response, biofilms were grown in DFR. Biofilms were treated with CHX or 0.9% sodium chloride (NaCl; control). Biofilms were plated for viability assessment. Confocal laser-scanning microscopy (CLSM) was also performed. Data analysis was carried out at 5% significance level. S. mutans viability and lactic acid production in dual-species biofilms were significantly reduced. S. mutans showed a higher resistance to CHX in dual-species biofilms. Total protein content, biomass and XTT reduction showed no significant di erences between singleand dual-species biofilms. CLSM images showed the formation of large clusters in dual-species biofilms. In conclusion, dual-species biofilms reduced S. mutans viability and lactic acid production and increased S. mutans’ resistance to chlorhexidine.
  • Thumbnail Image
    Item
    Efficacy of common antiseptic solutions against clinically relevant microorganisms in biofilm
    (British Editorial Society of Bone & Joint Surgery, 2021-05) O’Donnell, Jeffrey A.; Wu, Mark; Cochrane, Niall H.; Belay, Elshaday; Myntti, Matthew F.; James, Garth A.; Ryan, Sean P.; Seyler, Thorsten M.
    Aims Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm. Methods We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model. Results With regard to irrigant efficacy against biofilms, Povidone-iodine treatment resulted in greater reductions in nascent MRSA biofilms (logarithmic reduction (LR) = 3.12; p < 0.001) compared to other solutions. Bactisure treatment had the greatest reduction of mature Pseudomonas aeruginosa biofilms (LR = 1.94; p = 0.032) and a larger reduction than Vashe or Irrisept for mature Staphylococcus epidermidis biofilms (LR = 2.12; p = 0.025). Pooled data for all biofilms tested resulted in Bactisure and Povidone-iodine with significantly greater reductions compared to Vashe, Prontosan, and Irrisept solutions (p < 0.001). Conclusion Treatment failure in PJI is often due to failure to clear the biofilm; antiseptics are often used as an adjunct to biofilm clearance. We tested irrigants against clinically relevant microorganisms in biofilm in vitro and showed significant differences in efficacy among the different solutions. Further clinical outcome data is necessary to determine whether these solutions can impact PJI outcome in vivo.
  • Thumbnail Image
    Item
    Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials
    (2019-04) James, Garth A.; Boegli, Laura; Hancock, John; Bowersock, Lisa B.; Parker, Albert E.; Kinney, Brian M.
    "Background Bacterial biofilms have been implicated with breast implant complications including capsular contracture and anaplastic large-cell lymphoma. The actual mechanisms for either are still under active investigation and are not clear. Due to their increased surface area, implants with textured surfaces may harbor greater biofilm loads than those with smooth surfaces. Methods Biofilm formation on the outer surface material was compared using implants with various surface areas and roughness, including Natrelle® (Smooth), SmoothSilk®/SilkSurface® (Silk), VelvetSurface ® (Velvet), Siltex®, and Biocell®. The roughness and surface area of each material were assessed using non-contact profilometry. Bacterial attachment (2 h) and biofilm formation (24 h) were evaluated for Staphylococcus epidermidis, Pseudomonas aeruginosa, and Ralstonia pickettii over nine independent experiments using a CDC biofilm reactor and viable plate counts (VPCs) as well as confocal scanning laser microscopy. VPCs of the textured implants were compared relative to the Smooth implant. Results Surface areas increased with roughness and were similar among the three least rough implants (Smooth, Silk, and Velvet) and among the roughest implants (Siltex and Biocell). Overall, VPC indicated there was significantly more bacterial attachment and biofilm formation on the Siltex and Biocell implants than the Silk or Velvet implants, although there were differences between species and time points. CSLM confirmed the formation of thicker biofilms on the implants with rougher surface textures. Conclusion This in vitro study confirmed that implant surfaces with rougher texture, resulting in more surface area, harbored greater biofilm loads than those with smoother surfaces.
  • Thumbnail Image
    Item
    α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens Escherichia coli Biofilm Formation
    (2018-12) Catto, Cristina; Secundo, Francesco; James, Garth A.; Villa, Federica; Cappitelli, Francesca
    The protease α-chymotrypsin (α-CT) was covalently immobilized on a low-density polyethylene (LDPE) surface, providing a new non-leaching material (LDPE-α-CT) able to preserve surfaces from biofilm growth over a long working timescale. The immobilized enzyme showed a transesterification activity of 1.24 nmol/h, confirming that the immobilization protocol did not negatively affect α-CT activity. Plate count viability assays, as well as confocal laser scanner microscopy (CLSM) analysis, showed that LDPE-α-CT significantly impacts Escherichia coli biofilm formation by (i) reducing the number of adhered cells (−70.7 ± 5.0%); (ii) significantly affecting biofilm thickness (−81.8 ± 16.7%), roughness (−13.8 ± 2.8%), substratum coverage (−63.1 ± 1.8%), and surface to bio-volume ratio (+7.1 ± 0.2-fold); and (iii) decreasing the matrix polysaccharide bio-volume (80.2 ± 23.2%). Additionally, CLSM images showed a destabilized biofilm with many cells dispersing from it. Notably, biofilm stained for live and dead cells confirmed that the reduction in the biomass was achieved by a mechanism that did not affect bacterial viability, reducing the chances for the evolution of resistant strains.
  • Thumbnail Image
    Item
    Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment
    (2018-01) James, Garth A.; Chesnel, L.; Boegli, Laura; Pulcini, Elinor D.; Fisher, Steve T.; Stewart, Philip S.
    BACKGROUND: Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. OBJECTIVES: In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. METHODS: C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. RESULTS: Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. CONCLUSIONS: Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.