Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
29 results
Search Results
Item First Flight of the EUV Snapshot Imaging Spectrograph (ESIS)(American Astronomical Society, 2022-10) Parker, Jacob D.; Smart, Roy T.; Kankelborg, Charles; Winebarger, Amy; Goldsworth, NelsonThe Extreme-ultraviolet Snapshot Imaging Spectrograph (ESIS) launched on a sounding rocket from White Sands Missile Range on 2019 September 30. ESIS is a computed tomography imaging spectrograph (CTIS) designed to map emission line profiles across a wide field of view, revealing the structure and dynamics of small-scale transient events that are prevalent at transition region temperatures. In this paper, we review the ESIS instrument, mission, and data captured. We demonstrate how this unique data set can be interpreted qualitatively and further present some initial quantitative inversions of the data. Using a multiplicative algebraic reconstruction technique, we combine information from all four ESIS channels into a single spatial–spectral cube at every exposure. We analyze two small explosive events in the O v 629.7 Å spectral line with jets near ±100 km s−1 that evolve on 10 s timescales and vary significantly over small spatial scales. Intriguingly, each of these events turns out to be a bimodal (red+blue) jet with outflows that are asymmetric and unsynchronized. We also present a qualitative analysis of a small jetlike eruption captured by ESIS and draw comparisons to previously observed mini-filament eruptions. In 5 minutes of observing time, ESIS captured the spatial and temporal evolution of tens of these small events across the ∼11.′5 field of view, as well as several larger extended eruptions, demonstrating the advantage of CTIS instruments over traditional slit spectrographs in capturing the spatial and spectral information of dynamic solar features across large fields of view.Item Instrument Calibration of the Interface Region Imaging Spectrograph (IRIS) Mission(2018-11) Wulser, J. P.; Jaeggli, Sarah A.; De Pontieu, Bart; Tarbell, Ted D.; Boerner, P.; Freeland, S.; Liu, W.; Timmons, R.; Brannon, Sean R.; Kankelborg, Charles; Madsen, C.; McKillop, Sean; Prchlik, J.; Saar, Steven; Schanche, N.; Bryans, P.; Wiesmann, M.The Interface Region Imaging Spectrograph (IRIS) is a NASA small explorer mission that provides high-resolution spectra and images of the Sun in the 133-141nm and 278-283nm wavelength bands. The IRIS data are archived in calibrated form and made available to the public within seven days of observing. The calibrations applied to the data include dark correction, scattered light and background correction, flat fielding, geometric distortion correction, and wavelength calibration. In addition, the IRIS team has calibrated the IRIS absolute throughput as a function of wavelength and has been tracking throughput changes over the course of the mission. As a resource for the IRIS data user, this article describes the details of these calibrations as they have evolved over the first few years of the mission. References to online documentation provide access to additional information and future updates.Item The Unresolved Fine Structure Resolved: IRIS Observations of the Solar Transition Region(2014-10) Hansteen, Viggo H.; De Pontieu, B.; Carlsson, Mats; Lemen, James; Title, Alan M.; Boerner, P.; Hurlburt, Neal E.; Tarbell, Ted D.; Wuelser, Jean-Pierre; Pereira, Tiago M. D.; De Luca, E.E.; Golub, Leon; McKillop, Sean; Reeves, Kathy K.; Saar, Steven; Testa, Paola; Tian, Hui; Kankelborg, Charles; Jaeggli, Sarah; Kleint, Lucia; Martínez-Sykora, J.The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a longstanding problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, lowlying loops or loop segments at transitionregion temperatures that vary rapidly, on the time scales of minutes. We argue that the existence of these loops solves a longstanding observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.Item A PSF equalization technique for the Multi-Order Solar Extreme-ultraviolet Spectrograph (MOSES)(2015-10) Atwood, Shane; Kankelborg, CharlesThe Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a rocket-borne slitless imaging spectrometer, designed to observe He II (30.4 nm) emission in the solar transition region. This instrument forms three simultaneous images at spectral orders m=−1, 0, +1 over an extended field of view (FOV). A multi-layer coating on the grating and thin film filters in front of the detectors defines the instrument passband. Each image contains a unique combination of spectral and spatial information. Our overarching goal in analyzing these data is to estimate a spectral line profile at every point in the FOV. Each spectral order has different image geometry, and therefore different aberrations. Since the point spread function (PSF) differs between any two images, systematic errors are introduced when we use all three images together to invert for spectral line profiles. To combat this source of systematic error, we have developed a PSF equalization scheme. Determination of the image PSFs is impractical for several reasons, including changes that may occur due to vibration during both launch and recovery operations. We have therefore developed a strategy using only the solar images obtained during flight to generate digital filters that modify each image so that they have the same effective PSF. Generation of the PSF equalization filters does not require that the PSFs themselves be known. Our approach begins with the assumption that there are only two things that cause the power spectra of our images to differ: (1) aberrations; and (2) the FOV average spectral line profile, which is known in principle from an abundance of historical data. To validate our technique, we generate three synthetic images with three different PSFs. We compare PSF equalizations performed without knowledge of the PSF to corrections performed with that knowledge. Finally, we apply PSF equalization to solar images obtained in the 2006 MOSES flight and demonstrate the removal of artifacts.Item Using local correlation tracking to recover solar spectral information from a slitless spectrograph(2015-10) Courrier, Hans T.; Kankelborg, CharlesThe Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous solar images in the diffraction orders m = 0, +1, and −1. The large 2D field of view allows a single exposure to capture spatial and spectral information for large, complex solar features in their entirety. Most of the solar emission within the instrument passband comes from a single bright emission line. The m = 0 image is simply an intensity as a function of position, integrated over the passband of the instrument. Dispersion in the images at m = ±1 leads to a field-dependent displacement that is proportional to Doppler shift. Our goal is to estimate the Doppler shift as a function of position for every exposure. However, the interpretation of the data is not straightforward. Imaging an extended object such as the Sun without an entrance slit results in the overlapping of spectral and spatial information in the two dispersed images. We demonstrate the use of local correlation tracking as a means to quantify the differences between the m = 0 image and either one of the dispersed images. The result is a vector displacement field that may be interpreted as a measurement of the Doppler shift. Since two dispersed images are available, we can generate two independent Doppler maps from the same exposure. We compare these to produce an error estimate.Item Performance of the multilayer‐coated mirrors for the MultiSpectral Solar Telescope Array(1994-02-01) Allen, Maxwell; Willis, Thomas D.; Kankelborg, Charles; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; DeForest, Craig; Jackson, Lisa R.; Plummer, James D.; Walker, Arthur B.C. II; Barbee, Troy W. Jr.; Weed, J.W.; Hoover, Richard B.The Multi-Spectral Solar Telescope Array, a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. We report on recent measurements of the performance of multilayer coated mirrors for the Multi Spectral Solar Telescope Array, carried out at the Stanford Synchrotron Radiation Laboratory.Item Multi‐Spectral Solar Telescope Array VIII: the second flight(1995-06-20) Walker, Arthur B.C. II; Allen, Maxwell; DeForest, Craig; Kankelborg, Charles; Martinez-Galarce, Dennis S.; Plummer, James E.; Hoover, Richard B.; Barbee, Troy W. Jr.; Gore, David B.The Multi Spectral Solar Telescope Array (MSSTA) is a rocket borne observatory that utilizes an array of multi-layer and interference film coated telescopes to observe the solar atmosphere from the chromosphere to the corona, over a broad spectral range (VUV - soft x rays). The MSSTA is continuously evolved to incorporate new instruments, and to improve its ability to investigate specific topics related to the structure and dynamics of the solar atmosphere. We describe chromospheric and coronal observations recorded during the second flight of the MSSTA on November 3, 1994 at 1915 UT.Item Calibration of multilayer mirrors for the Multi‐Spectral Solar Telescope Array II(1995-06-20) Kankelborg, Charles; Plummer, James E.; Martinez-Galarce, Dennis S.; O'Neal, Ray H.; DeForest, Craig; Walker, Arthur B.C. II; Barbee, Troy W. Jr.; Weed, J.W.; Hoover, Richard B.; Powell, Forbes R.The Multi-Spectral Solar Telescope Array II (MSSTA II), a rocket-borne solar observatory, was successfully flown on November 3, 1994 obtaining solar images in multiple XUV and FUV bands with an array of compact multilayer telescopes. Extensive measurements have recently been carried out on some of the multilayer telescopes at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of newly introduced MSSTA II instruments and instruments with lambda0 less than 130 angstrom. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpasses, and multilayer bandpass changes with time.Item Optical focusing and alignment of the Multi‐Spectral Solar Telescope Array II payload(1995-06-20) Gore, David B.; Hadaway, James B.; Hoover, Richard B.; Walker, Arthur B.C. II; Kankelborg, CharlesThe Multi-Spectral Solar Telescope Array (MSSTA) is a sounding rocket borne observatory designed to image the sun at many spectral lines in soft x-ray, EUV, and FUV wavelengths. Of the nineteen telescopes flown on November 3, 1994 the two Cassegrain telescopes and three of the six Ritchey-Cretien telescopes were focussed at NASA/Marshall Space Flight Center (MSFC) with a Zygo double-pass interferometer to determine the best positions of back focus. The remaining three Ritchey-Cretien and eleven Herschellian telescopes were focussed in situ at White Sands Missile Range by magnifying the telescopic image through a Gaertner traveling microscope and recording the position of best focus. From the data obtained at visible wavelengths, it is not unreasonable to expect that many of our telescopes did attain the sub-arc second resolution for which they were designed.Item Design and performance of thin foil XUV filters for the Multi‐Spectral Solar Telescope Array II(1995-06-20) Plummer, James E.; DeForest, Craig; Martinez-Galarce, Dennis S.; Kankelborg, Charles; Gore, David B.; O'Neal, Ray H.; Walker, Arthur B.C. II; Powell, Forbes R.; Hoover, Richard B.; Barbee, Troy W. Jr.; Weed, J.W.The redesigned payload of the Multi-Spectral Solar Telescope Array (MSSTA), the MSSTA II, was successfully flown on November 3, 1994. The multilayer mirrors used in the normal incidence optical systems of the MSSTA II are efficient reflectors for soft x-ray/extreme ultraviolet (EUV) radiation at wavelengths that satisfy the Bragg condition, thus allowing a narrow band of the soft x-ray/EUV spectrum to be isolated. When applied to solar observations the temperature response of an optical system is quite sensitive to telescope bandpass because of the high density of lines in the coronal spectrum. We have designed a set of thin foil filters in conjunction with our multilayer optics to eliminate contaminant lines and specular reflectivity, thus enhancing the temperature diagnostic capabilities of our instruments. Extensive measurements have recently been carried out on the thin foil filters at the Stanford Synchrotron Radiation Laboratory. We describe here the design and performance of thin foil filters developed for the MSSTA II.
- «
- 1 (current)
- 2
- 3
- »