Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Norepinephrine transporter defects lead to sympathetic hyperactivity in Familial Dysautonomia models
    (Springer Science and Business Media LLC, 2022-11) Wu, Hsueh-Fu; Yu, Wenxin; Saito-Diaz, Kenyi; Huang, Chia-Wei; Carey, Joseph; Lefcort, Frances; Hart, Gerald W.; Liu, Hong-Xiang; Zeltner, Nadja
    Familial dysautonomia (FD), a rare neurodevelopmental and neurodegenerative disorder affects the sympathetic and sensory nervous system. Although almost all patients harbor a mutation in ELP1, it remains unresolved exactly how function of sympathetic neurons (symNs) is affected; knowledge critical for understanding debilitating disease hallmarks, including cardiovascular instability or dysautonomic crises, that result from dysregulated sympathetic activity. Here, we employ the human pluripotent stem cell (hPSC) system to understand symN disease mechanisms and test candidate drugs. FD symNs are intrinsically hyperactive in vitro, in cardiomyocyte co-cultures, and in animal models. We report reduced norepinephrine transporter expression, decreased intracellular norepinephrine (NE), decreased NE re-uptake, and excessive extracellular NE in FD symNs. SymN hyperactivity is not a direct ELP1 mutation result, but may connect to NET via RAB proteins. We found that candidate drugs lowered hyperactivity independent of ELP1 modulation. Our findings may have implications for other symN disorders and may allow future drug testing and discovery.
  • Thumbnail Image
    Item
    Elp1 is required for development of visceral sensory peripheral and central circuitry
    (The Company of Biologists, 2022-05) Tolman, Zariah; Chaverra, Marta; George, Lynn; Lefcort, Frances
    Cardiovascular instability and a blunted respiratory drive in hypoxic conditions are hallmark features of the genetic sensory and autonomic neuropathy, familial dysautonomia (FD). FD results from a mutation in the gene ELP1, the encoded protein of which is a scaffolding subunit of the six-subunit Elongator complex. In mice, we and others have shown that Elp1 is essential for the normal development of neural crest-derived dorsal root ganglia sensory neurons. Whether Elp1 is also required for development of ectodermal placode-derived visceral sensory receptors, which are required for normal baroreception and chemosensory responses, has not been investigated. Using mouse models for FD, we here show that the entire circuitry underlying baroreception and chemoreception is impaired due to a requirement for Elp1 in the visceral sensory neuron ganglia, as well as for normal peripheral target innervation, and in their central nervous system synaptic partners in the medulla. Thus, Elp1 is required in both placode- and neural crest-derived sensory neurons, and its reduction aborts the normal development of neuronal circuitry essential for autonomic homeostasis and interoception.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.