Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
2 results
Search Results
Item The Depletion Mechanism Actuates Bacterial Aggregation by Exopolysaccharides and Determines Species Distribution & Composition in Bacterial Aggregates(Frontiers Media SA, 2022-06) Secor, Patrick R.; Michaels, Lia A.; Bublitz, DeAnna C.; Jennings, Laura K.; Singh, Pradeep K.Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa’s interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.Item Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa(Proceedings of the National Academy of Sciences, 2018-10) Secor, Patrick R.; Michaels, Lia A.; Ratjen, Anina; Jennings, Laura K.; Singh, Pradeep K.Bacteria causing chronic infections are generally observed living in cell aggregates suspended in polymer-rich host secretions, and bacterial phenotypes induced by aggregated growth may be key factors in chronic infection pathogenesis. Bacterial aggregation is commonly thought of as a consequence of biofilm formation; however the mechanisms producing aggregation in vivo remain unclear. Here we show that polymers that are abundant at chronic infection sites cause bacteria to aggregate by the depletion aggregation mechanism, which does not require biofilm formation functions. Depletion aggregation is mediated by entropic forces between uncharged or like-charged polymers and particles (e.g., bacteria). Our experiments also indicate that depletion aggregation of bacteria induces marked antibiotic tolerance that was dependent on the SOS response, a stress response activated by genotoxic stress. These findings raise the possibility that targeting conditions that promote depletion aggregation or mechanisms of depletion-mediated tolerance could lead to new therapeutic approaches to combat chronic bacterial infections.