Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
6 results
Search Results
Item Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column(1996-08) Reinsel, Mark A.; Sears, Joe; Stewart, Philip S.; McInerney, Michael J.Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO2−). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.Item Partition coefficients for acetic, propionic, and butyric acids in a crude oil/water system(1994-07) Reinsel, Mark A.; Borkowski, J. J.; Sears, JoeItem A computer investigation of chemically mediated detachment in bacterial biofilms(2003-05) Hunt, Stephen Michael; Hamilton, Martin A.; Sears, Joe; Harkin, Gary; Reno, JasonA three-dimensional computer model was used to evaluate the effect of chemically mediated detachment on biofilm development in a negligible-shear environment. The model, BacLAB, combines conventional diffusion-reaction equations for chemicals with a cellular automata algorithm to simulate bacterial growth, movement and detachment. BacLAB simulates the life cycle of a bacterial biofilm from its initial colonization of a surface to the development of a mature biofilm with cell areal densities comparable to those in the laboratory. A base model founded on well established transport equations that are easily adaptable to investigate conjectures at the biological level has been created. In this study, the conjecture of a detachment mechanism involving a bacterially produced chemical detachment factor in which high local concentrations of this detachment factor cause the bacteria to detach from the biofilm was examined. The results show that the often observed ‘mushroom’-shaped structure can occur if detachment events create voids so that the remaining attached cells look like mushrooms.Item Quantifying selected growth parameters of leptothrix discophora sp-6 in biofilms from oxygen concentration profiles(2003-10) Yurt, Nurdan; Beyenal, Haluk; Sears, Joe; Lewandowski, ZbigniewIt is a dubious but common practice to use growth parameters measured in suspended cultures to predict substrate concentration profiles in biofilms. To obtain biofilm biokinetic parameters that apply to biofilms, a reliable method is needed that allows the computation of biokinetic parameters from substrate concentration profiles measured directly in biofilms. We have developed such a method and demonstrated its utility by evaluating biokinetic parameters from oxygen concentration profiles measured in biofilms of Leptothrix discophora SP-6 grown on a membrane, which was placed on top of an agar plate by fitting the data to Monod or Tessier growth kinetics, including maintenance substrate consumptions. We found that the Monod model represented the growth of L. discophora SP-6 biofilms marginally better than the Tessier model. The Monod half saturation coefficient was 0.333 ± "0.077 mg/l.Item Passive film chemistry on 316l stainless steel ennobled by biomineralized manganese(2002-04) Yurt, Nurdan; Avci, Recep; Lewandowski, Zbigniew; Sears, JoeThe effect of ennoblement on chemistry of passive films on 316L stainless steel (SS) was quantified using surface-sensitive analytical techniques. Under well-defined laboratory conditions, SS coupons were ennobled to ~ +350Vsce by biofilms of manganese-oxidizing bacterium Leptothrix discophra SP-6. Ennobled coupons were analyzed by x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TofSIMS). From the XPS depth profiles of Fe, Cr, O, Ni, C and Mn, we evaluated thickness of the passive layers before and after ennoblement, while the TofSIMS depth profiles were used to evaluate spatial distribution of Mn, Cr, Fe and Ni on the surface. Because the ennobled coupons were covered with biomineralized deposits, sputtering was used to remove these deposits under ultrahigh vacuum (UHV) conditions before probing the chemistry of the underlying passive layers. The main conclusion of the paper is that oxide layers on the ennobled coupons are significantly thinner that those on the pre-ennobled coupons, which may, hypothetically, contribute to their susceptibility to localized corrosion.Item Adhesion and biofilm formation of Candida albicans on native and pluronic-treated polystyrene(2005-01) Wesenberg-Ward, Karen E,; Tyler, Bonnie J.; Sears, JoeCandida albicans forms part of the normal human flora whose growth is usually restricted by the normal flora bacteria and the host's immune system. It is an opportunistic fungal pathogen that causes infections in immunocompromised individuals, mechanical trauma victims and iatrogenic patients. Candida albicans can ingress the human host by adhering to a plastic surface (i.e., prosthetic devices, catheters, artificial organs, etc.) that is subsequently implanted, and forms a protective biofilm that provides a continuous reservoir of yeast to be hematogenously dispersed. In order for the medical profession to battle device-related infections, initial adhesion and biofilm formation of C. albicans needs to be better understood. There has been some skepticism as to whether the initial adhesion events bear any relationship to subsequent biofilm formation. Thus, to better comprehend the relationship between the initial adhesion rates and growth rate and biofilm formation, these events were studied on two different, well-defined culture surfaces, native polystyrene and Pluronic F127-conditioned polystyrene. The adhesion studies determined that Pluronic F127 adsorption dramatically reduced the adhesion of C. albicans to polystyrene. The biofilm growth studies, analyzed by confocal scanning laser microscopy, revealed that Pluronic F127 decreased the biofilm surface coverage, cluster group size, thickness and the presence of hyphal elements over the untreated polystyrene. These findings indicate that the effect of a material's surface chemistry on the initial adhesion process has a direct influence on subsequent biofilm formation.