Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
3 results
Search Results
Item Improvement of Endosperm Hydration Counter the Negative Relationship Between Dormancy and Malt Quality in Barley (Hordeum vulgare)(Wiley, 2024-08) Jensen, Joseph; Uhlmann, Hannah; Lachowiec, Jennifer; Lutgen, Greg; Cook, Jason P.; Yin, Xiang S.; Kephart, Ken; Sherman, JamieDormancy in barley has been thoroughly studied and shown to negatively impact malt quality, resulting in selection against dormancy. However, reduced dormancy coincides with increased preharvest sprout (PHS) risk, thus sparking a new interest in integrating dormancy back into American barley lines if the negative effects of dormancy on malt quality can be overcome. We evaluated the dormancy and hydration index (HYI) in a biparental mapping population to determine the genotypes that would protect against PHS but have good malt quality. We found 4 HYI QTLs and 4 dormancy QTLs, one of which was near the well-described SD2 QTL. The HYI QTLs were pleiotropically related to seed size (1H), dormancy (5H) and malt quality (2H). Lines with dormancy (5H) and increased HYI (2H and 3H) had malt quality similar to nondormant lines while maintaining PHS resistance, suggesting improvements in HYI could be the key to overcoming the negative effects of dormancy in malting.Item Genetic dissection of endosperm hydration in malting barley (Hordeum vulgare)(Wiley, 2023-08) Jensen, Joseph; Turner, Hannah; Lachowiec, Jennifer; Lutgen, Greg; Yin, Xiang S.; Sherman, JamieHydration of the endosperm is a critical part of the malting process that ensures proper modification of the grain. However, little is known about the genetic controls of endosperm hydration and its relationship to agronomic and malt quality traits. The extent of endosperm hydration is estimated through hydration index (HYI). We measured HYI, agronomic, and malt quality traits on a 169-line subset of the NSGC Barley Core Panel, which includes global malt lines, some dating from the inception of European breeding programmes. Utilizing GWAS, 61 QTLs were identified for HYI, dormancy, agronomic, and malt quality traits. Of these, six were found to be related to HYI and were located on 1H, 2H, 3H, 6H, and 7H. We found HYI QTLs cosegregating with kernel size and hardness (1H and 3H), malting quality (2H and 6H), and dormancy (2H and 6H). These results indicate that endosperm hydration after steeping can be improved by selecting high HYI alleles on 2H, 6H, and 7H, positively impacting malting quality without negatively impacting kernel size or dormancy.Item The Pseudomonas aeruginosa RpoH (σ32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance(MDPI AG, 2023-01) Williamson, Kerry S.; Dlakić, Mensur; Akiyama, Tatsuya; Franklin, Michael J.The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.