Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Monitoring sheep and Culicoides midges in Montana for evidence of Bunyamwera serogroup virus infection
    (2014-02) Johnson, Greg; Bahnson, C. S.; Cochrane, Z. N.; Ishii, P.; Hokit, D. G.; Plummer, P. J.; Bartholomay, L. C.; Blitvich, B. J.
    Introduction: A serological and entomological investigation was performed to monitor for potential Bunyamwera (BUN) serogroup virus activity in Montana. Results: To facilitate the serological investigation, sera were collected from 104 sheep in 2013 and 2014 and assayed by plaque reduction neutralization test using all six BUN serogroup viruses known to occur in the United States: Cache Valley virus (CVV), Lokern virus (LOKV), Main Drain virus (MDV), Northway virus, Potosi virus and Tensaw virus. BUN serogroup virus-specific antibodies were detected in 41 (39%) sheep. Of these, three were seropositive for MDV, one was seropositive for CVV, one was seropositive for LOKV and 36 had antibodies to an undetermined BUN serogroup virus. Additionally, 30,606 Culicoides sonorensis were collected in 2013 using Centers for Disease Control and Prevention (CDC) light traps and assayed for cytopathic virus by virus isolation in African Green Monkey kidney (Vero) cells. All midges were negative. Almost one-third of the midges were further tested by reverse transcription-polymerase chain reaction using BUN serogroup virus-reactive primers and all were negative. Conclusions: We provide evidence of BUN serogroup virus infection in sheep but not C. sonorensis in Montana in 2013-2014. This study also provides the first evidence of CVV, MDV and LOKV activity in Montana.
  • Thumbnail Image
    Item
    Community structure and function of high-temperature phototrophic microbial mats inhabiting diverse geothermal environments.
    (2013-06) Klatt, Christian G.; Inskeep, William P.; Herrgard, M.; Jay, Zackary J.; Rusch, Douglas B.; Tringe, Susannah G.; Parenteau, M. N.; Ward, David M.; Boomer, S. M.; Bryant, Donald A.
    Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average ∼53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation.
  • Thumbnail Image
    Item
    IgG Endopeptidase SeMac does not Inhibit Opsonophagocytosis of Streptococcus equi Subspecies equi by Horse PolymorphonuclearLeukocytes
    (2010-08) Liu, Mengyao; Lei, Benfang
    The secreted Mac protein made by group A Streptococcus (GAS) inhibits opsonophagocytosis of GAS by human polymorphonuclear leukocytes (PMNs). This protein also has the endopeptidase activity against human immunoglobulin G (IgG), and the Cys94, His262 and Asp284 are critical for the enzymatic activity. The horse pathogen Streptococcus equi subspecies equi produces a homologue of Mac (SeMac). SeMac was characterized to determine whether SeMac has IgG endopeptidase activity and inhibits opsonophagocytosis of S. equi by horse PMNs. The gene was cloned and recombinant SeMac was overexpressed in Escherichia coli and purified to homogeneity. Mice with experimental S. equi infection and horses with strangles caused by S. equi seroconverted to SeMac, indicating that SeMac is produced in vivo during infection. SeMac has endopeptidase activity against human IgG. However, the protein just cleaves a small fraction, which may be IgG1 only, of horse IgG. Replacement of Cys102 with Ser or His272 with Ala abolishes the enzymatic activity of SeMac, and the Asp294Ala mutation greatly decreases the enzymatic activity. SeMac does not inhibit opsonophagocytosis of S. equi by horse PMNs but opsonophagocytosis of GAS by human PMNs. Thus, SeMac is a cysteine endopeptidase with a limited activity against horse IgG and must have other function.
  • Thumbnail Image
    Item
    Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate InnateImmune Evasion
    (2012-04) Liu, Mengyao; Zhu, Hui; Li, Jinquan; Garcia, C. C.; Feng, Wenchao; Kirpotina, Liliya N.; Hilmer, Jonathan K.; Tavares, L. P.; Layton, A. W.; Quinn, Mark T.; Bothner, Brian; Teixeira, M. M.; Lei, Benfang
    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.