Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
23 results
Search Results
Item Momentum for agroecology in the USA(Springer Science and Business Media LLC, 2024-07) Ong, Theresa W.; Roman-Alcalá, Antonio; Jiménez-Soto, Estelí; Jackson, Erin; Perfecto, Ivette; Duff, HannahThe alarming convergence of ecological, health and societal crises underpins the urgent need to transform our agricultural and food systems. The global food system, with industrial agriculture at its core, poses a major threat to our planet’s health, contributing to climate change, biodiversity loss and food insecurity, which is known as the triple threat to humanity. The hidden costs of a global food system that relies on industrial agriculture are estimated to be US$12.7 trillion, with the vast majority driven by public-health crises due to unhealthy foods that disproportionately burden people on the lowest incomes.Item Connecting research and practice to enhance the evolutionary potential of species under climate change(Wiley, 2023-01) Thompson, Laura M. et al.; Beever, Erik A.Resource managers have rarely accounted for evolutionary dynamics in the design or implementation of climate change adaptation strategies. We brought the research and management communities together to identify challenges and opportunities for applying evidence from evolutionary science to support on-the-ground actions intended to enhance species' evolutionary potential. We amalgamated input from natural-resource practitioners and interdisciplinary scientists to identify information needs, current knowledge that can fill those needs, and future avenues for research. Three focal areas that can guide engagement include: (1) recognizing when to act, (2) understanding the feasibility of assessing evolutionary potential, and (3) identifying best management practices. Although researchers commonly propose using molecular methods to estimate genetic diversity and gene flow as key indicators of evolutionary potential, we offer guidance on several additional attributes (and their proxies) that may also guide decision-making, particularly in the absence of genetic data. Finally, we outline existing decision-making frameworks that can help managers compare alternative strategies for supporting evolutionary potential, with the goal of increasing the effective use of evolutionary information, particularly for species of conservation concern. We caution, however, that arguing over nuance can generate confusion; instead, dedicating increased focus on a decision-relevant evidence base may better lend itself to climate adaptation actions.Item Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus(MDPI, 2023-01) Misra, Deblina; Dutta, Writupana; Jha, Gaurav; Ray, PujaPhenols are major compounds produced by plant species as a peripheral stimulus or as a regulatory defense mechanism under different environmental biotic stresses. These secondary metabolites are generated from shikimic and acetic acid metabolic pathways. The aromatic benzene ring compound plays an important role in plant development, especially in the defense forefront. They provide structural integrity and support to the plants. Phenolic phytoalexins released by pathogen/arthropod-attacked or wounded plants nullify or repel organisms for the advantage of the host. The allelopathic potential of phenolic compounds is observed in both natural and managed ecosystems. The global impacts of climatic variabilities such as drought, increased carbon dioxide, or greenhouse gas emissions alter the quantitative response of plant phenols. This review primarily discusses the different aspects of phenolic interactions concerning health, antioxidant properties, and insect-plant interaction as a nexus of soil and plant relations in response to variable climatic conditions.Item A framework to link climate change, food security, and migration: unpacking the agricultural pathway(Springer Science and Business Media LLC, 2024-03) Tuholske, Cascade; Di Landro, Maria Agustina; Anderson, Weston; van Duijne, Robbin Jan; de Sherbinin, AlexResearchers have long hypothesized linkages between climate change, food security, and migration in low- and middle-income countries (LMICs). One such hypothesis is the “agricultural pathway,” which postulates that negative climate change impacts on food production harm livelihoods, which triggers rural out-migration, internally or abroad. Migration is thus an adaptation to cope with the impacts of climate change and bolster livelihoods. Recent evidence suggests that the agriculture pathway is a plausible mechanism to explain climate-related migration. But direct causal connections from climate impacts on food production to livelihood loss to rural out-migration have yet to be fully established. To guide future research on the climate-food-migration nexus, we present a conceptual framework that outlines the components and linkages underpinning the agricultural pathway in LMICs. We build on established environmental-migration conceptual frameworks that have informed empirical research and deepened our understanding of complex human-environmental systems. First, we provide an overview of the conceptual framework and its connection to the agricultural pathway hypothesis in the climate mobility literature. We then outline the primary components and linkages of the conceptual framework as they pertain to LMIC contexts, highlighting current research gaps and challenges relating to the agricultural pathway. Last, we discuss possible future research directions for the climate-food-migration nexus. By highlighting the complex, multiscale, interconnected linkages that underpin the agricultural pathway, our framework unpacks the multiple causal connections that currently lie hidden in the agricultural pathway hypothesis.Item Hazardous heat exposure among incarcerated people in the United States(Springer Science and Business Media LLC, 2024-03) Tuholske, Cascade; Lynch, Victoria D.; Spriggs, Raenita; Ahn, Yoonjung; Raymond, Colin; Nigra, Anne E.; Parks, Robbie M.Climate change is predicted to increase the frequency of potentially hazardous heat conditions across the United States, putting the incarcerated population of 2 million at risk for heat-related health conditions. We evaluate the exposure to potentially hazardous heat for 4,078 continental US carceral facilities during 1982–2020. Results show that the number of hot days per year increased during 1982–2020 for 1,739 carceral facilities, primarily located in the southern United States. State-run carceral facilities in Texas and Florida accounted for 52% of total exposure, despite holding 12% of all incarcerated people. This highlights the urgency for enhanced infrastructure, health system interventions and treatment of incarcerated people, especially under climate change.Item Yellowstone Cutthroat Trout Recovery in Yellowstone Lake: Complex Interactions Among Invasive Species Suppression, Disease, and Climate Change(Wiley, 2023-10) Glassic, Hayley C.; Chagaris, David D.; Guy, Christopher S.; Tronstad, Lusha M.; Lujan, Dominque R.; Briggs, Michelle A.; Albertson, Lindsey K.; Brenden, Travis O.; Walsworth, Timothy E.; Koel, Todd M.n Yellowstone Lake, Wyoming, the largest inland population of nonhybridized Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, hereafter Cutthroat Trout, declined throughout the 2000s because of predation from invasive Lake Trout Salvelinus namaycush, drought, and whirling disease Myxobolus cerebralis. To maintain ecosystem function and conserve Cutthroat Trout, a Lake Trout gill netting suppression program was established in 1995, decreasing Lake Trout abundance and biomass. Yet, the response of Cutthroat Trout to varying Lake Trout suppression levels, collectively with the influence of disease and climate, is unknown. We developed an ecosystem model (calibrated to historical data) to forecast (2020–2050) whether Cutthroat Trout would achieve recovery benchmarks given disease, varying suppression effort, and climate change. Lake Trout suppression influenced Cutthroat Trout recovery; current suppression effort levels resulted in Cutthroat Trout recovering from historical lows in the early 2000s. However, Cutthroat Trout did not achieve conservation benchmarks when incorporating the influence of disease and climate. Therefore, the National Park Service intends to incorporate age‐specific abundance, spawner biomass, or both in conservation benchmarks to provide better indication of how management actions and environmental conditions influence Cutthroat Trout. Our results illustrate how complex interactions within an ecosystem must be simultaneously considered to establish and achieve realistic benchmarks for species of conservation concern.Item Effects of water surplus on prevented planting in the US Corn Belt for corn and soybeans(IOP Publishing, 2023-09) Lee, Seunghyun; Abatzoglou, John TRecord-high prevented planting of staple crops such as corn and soybeans in the United States (US) Corn Belt due to heavy rainfall in recent years has spurred concern over crop production, as growing evidence suggests winter and spring precipitation extremes will occur more frequentlyin the coming decades. Using county-level data, we examine the effects of planting-season water surplus—precipitation minus evaporative demand—on prevented planting of corn and soybeans in the US Corn Belt. Using monthly water surplus data, we show significant impacts of excess moisture on preventing planting and suggest a 58%–177% increase in prevented planting during the months of April–June per standard deviation increase in water surplus. Downscaled climate change projections are used to estimate future changes in prevented planting during the mid-century (2036–2065) under the moderate emission scenario (RCP4.5). Our model predicts a decrease in prevented planting of approximately 111,000 acres (12%) for corn and 80,000 acres (16%) for soybeans in the US Corn Belt, relative to historical levels from 1950 to 2005. However, if we consider only precipitation and disregard evaporative demand, the alternative model indicates an increase of approximately 260,000 acres (30%) for corn and 86,000 acres (19%) for soybeans. Geographically, we find that prevented planting will slightly increase in some parts of Iowa, Minnesota, and Wisconsin and generally decrease in the other parts of the US Corn Belt. This work collectively highlights the value of incorporating water surplus data in assessing prevented-planting impacts and is the first known study to examine changing risk of prevented planting under future climate scenarios that may help inform adaptation efforts to avoid losses.Item Declines in body size of sockeye salmon associated with increased competition in the ocean(The Royal Society, 2023-02) Ohlberger, Jan; Cline, Timothy J.; Schindler, Daniel E.; Lewis, BertDeclining body sizes have been documented for several species of Pacific salmon; however, whether size declines are caused mainly by ocean warming or other ecological factors, and whether they result primarily from trends in age at maturation or changing growth rates remain poorly understood. We quantified changes in mean body size and contributions from shifting size-at-age and age structure of mature sockeye salmon returning to Bristol Bay, Alaska, over the past 60 years. Mean length declined by 3%, corresponding to a 10% decline in mean body mass, since the early 1960s, though much of this decline occurred since the early 2000s. Changes in size-at-age were the dominant cause of body size declines and were more consistent than trends in age structure among the major rivers that flow into Bristol Bay. Annual variation in size-at-age was largely explained by competition among Bristol Bay sockeye salmon and interspecific competition with other salmon in the North Pacific Ocean. Warm winters were associated with better growth of sockeye salmon, whereas warm summers were associated with reduced growth. Our findings point to competition at sea as the main driver of sockeye salmon size declines, and emphasize the trade-off between fish abundance and body size.Item Narratives and the Policy Process: Applications of the Narrative Policy Framework(Montana State University Library, 2022) Jones, Michael D.; McBeth, Mark K.; Shanahan, Elizabeth A.A long history of literature describes how stories are central to how humans understand and communicate about the world around them. The NPF applies these discoveries to the policy process, whereby narratives are meaning-making tools used to capture attention and influence policy outcomes. Conceived at the Portneuf School of Narrative in the early part of the century and formally named in 2010, the Narrative Policy Framework’s (NPF) initial purpose was to scientifically understand the relationship between narratives and the policy process. Since its seminal naming, the NPF’s charter has expanded to non-scientific approaches (Gray & Jones, 2015; Jones and Radaelli, 2015), to science and policy communication, as well as proclaiming normative commitments to both science and democracy. Recently, guideline publications have also been produced that provide detailed instructions about how to conduct NPF research. Along the way several summary pieces have chronicled the NPF’s development. Two of these NPF assessments were part of larger collections of NPF studies, including the 2014 edited volume The Science of Stories and a special NPF symposium issue featured in the Policy Studies Journal. On par with NPF collections emerging every four years, here we offer a third collection of NPF studies that represent some of the best NPF studies to date.Item Narratives and the Policy Process: Applications of the Narrative Policy Framework. Chapter 9: A Narrative Policy Framework Solution to Understanding Climate Change Framing Research(Pressbooks, 2022) Wolters, Erika Allen; Jones, Michael D.The climate change framing literature is vast. So much so that researchers—whether seasoned framing scholars or those foraying into climate change framing research for the first time—can easily be overwhelmed by the sheer volume of studies, the vast array of concepts deployed, the variation in how these same concepts are operationalized, the nuance of a barely numerable assortment of contexts, and the effects all of the aforementioned have on interpreting findings. Here we offer a synthetic review of said literature, focusing on adaptation and mitigation framing studies and findings. In so doing, we first briefly distill the overall developmental arc of climate change framing research. We then provide a conventionally styled thematic overview of the mitigation and adaptation climate change studies. Among other conclusions, we find that while there has been a proliferation of climate change framing research, the findings and the studies themselves are often quite disparate from one another. Moreover, as the literature speaks to itself intermittently and in an ad hoc fashion, it is not readily apparent how climate change framing studies holistically fit together. As a solution to this problem, we offer the Narrative Policy Framework (NPF) as a narrative heuristic to help climate change researchers and communicators organize and understand the literature. We argue that an NPF integration of this inherently unwieldy literature increases the likelihood of research utilization and improves the ability of climate change communicators to inform people about the risks of climate change.
- «
- 1 (current)
- 2
- 3
- »