Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Application of the Standardized Vegetation Index (SVI) and Google Earth Engine (GEE) for drought management in Peru
    (Universidad Autonoma de Yucatan. Facultad de Medicina Veterinaria y Zootecnia, 2021-11) Veneros, Jaris; García, Ligia
    Background. The SVI (Standardized Vegetation Index) provides a relative comparison of the condition of the vegetation in different classifications for monitoring droughts. Objective. In this research, the SVI was used through the Google Earth Engine (GEE) at the national level and in three study points for a coastal, Amazonian, and Andean region for October 31, 2020, and two decades. Methodology. For the construction of the SVI, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Version 6 were used; of the Terra sensor (MOD13Q1) with a temporal resolution of 16 days, a spatial resolution of 250 meters, and as a level 3 product. Results. The SVI was represented in five classifications: with green color ≥ 0 (No Drought), yellow color -0.10 to -0.94 (Slight drought), light orange color -0.95 to -1.44 (Moderate drought), dark orange color -1.45 to -1.94 (Severe drought), and red color ≤ -1.95 (Extreme drought). Implications. The change in historical SVI values was evidenced due to causes such as El Niño costero (coastal) and deforestation of Tropical Forests; for the Sechura Desert in Piura and La Pampa in Madre de Dios, respectively. Subsequently, in the Andes of Peru, in Ollachea, Puno, it was determined that the SVI value, more extreme negative, represented an extreme drought never registered for this area. Conclusion. The SVI and GEE provided tools for drought management with high spatial and temporal resolution.
  • Thumbnail Image
    Item
    A typology of drought decision making: Synthesizing across cases to understand drought preparedness and response actions
    (Elsevier BV, 2021-09) Cravens, Amanda E.; Henderson, Jen; Friedman, Jack; Burkardt, Nina; Cooper, Ashley E.; Haigh, Tonya; Hayes, Michael; McEvoy, Jamie; Paladino, Stephanie; Wilke, Adam K.; Wilmer, Hailey
    Drought is an inescapable reality in many regions, including much of the western United States. With climate change, droughts are predicted to intensify and occur more frequently, making the imperative for drought management even greater. Many diverse actors – including private landowners, business owners, scientists, non-governmental organizations (NGOs), and managers and policymakers within tribal, local, state, and federal government agencies – play multiple, often overlapping roles in preparing for and responding to drought. Managing water is, of course, one of the most important roles that humans play in both mitigating and responding to droughts; but, focusing only on “water managers” or “water management” fails to capture key elements related to the broader category of drought management. The respective roles played by those managing drought (as distinct from water managers), the interactions among them, and the consequences in particular contexts, are not well understood. Our team synthesized insights from 10 in-depth case studies to understand key facets of decision making about drought preparedness and response. We present a typology with four elements that collectively describe how decisions about drought preparedness and response are made (context and objective for a decision; actors responsible; choice being made or action taken; and how decisions interact with and influence other decisions). The typology provides a framework for system-level understanding of how and by whom complex decisions about drought management are made. Greater system-level understanding helps decision makers, program and research funders, and scientists to identify constraints to and opportunities for action, to learn from the past, and to integrate ecological impacts, thereby facilitating social learning among diverse participants in drought preparedness and response.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.