Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A DeoR-Type Transcription Regulator Is Required for Sugar-Induced Expression of Type III Secretion-Encoding Genes in Pseudomonas syringae pv. tomato DC3000
    (Scientific Societies, 2020-03) Turner, Sydney E.; Pang, Yin-Yuin; O’Malley, Megan R.; Weisberg, Alexandra J.; Fraser, Valerie N.; Yan, Qing; Chang, Jeff H.; Anderson, Anderson
    The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.
  • Thumbnail Image
    Item
    Optimized High Throughput Ascochyta Blight Screening Protocols and Immunity to A. pisi in Pea
    (MDPI AG, 2023-03) Annan, Emmanuel N.; Nyamesorto, Bernard; Yan, Qing; McPhee, Kevin; Huang, Li
    Ascochyta blight (AB) is a destructive disease of the field pea (Pisum sativum L.) caused by necrotrophic fungal pathogens known as the AB-disease complex. To identify resistant individuals to assist AB resistance breeding, low-cost, high throughput, and reliable protocols for AB screening are needed. We tested and optimized three protocols to determine the optimum type of pathogen inoculum, the optimal development stage for host inoculation, and the timing of inoculation for detached-leaf assays. We found that different plant development stages do not affect AB infection type on peas, but the timing of inoculation affects the infection type of detached leaves due to wound-induced host defense response. After screening nine pea cultivars, we discovered that cultivar Fallon was immune to A. pisi but not to A. pinodes or the mixture of the two species. Our findings suggest that AB screening can be done with any of the three protocols. A whole-plant inoculation assay is necessary for identifying resistance to stem/node infection. Pathogen inoculation must be completed within 1.5 h post-detachment to avoid false positives of resistance for detach-leaf assays. It is essential to use a purified single-species inoculum for resistant resource screenings to identify the host resistance to each single species.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.