Physics

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/52

The Physics department is committed to education and research in physics, the study of the fundamental universal laws that govern the behavior of matter and energy, and the exploration of the consequences and applications of those laws. Our department is widely known for its excellent teaching and student mentoring. Our department plays an important role in the university’s Core Curriculum. We have strong academic programs with several options for undergraduate physics majors, leading to the B.S. degree, as well as graduate curricula leading to the M.S. and Ph.D. degrees. Our research groups span a variety of fields within physics. Our principal concentrations are in Astrophysics, Relativity, Gravitation and Cosmology, Condensed Matter Physics, Lasers and Optics, Physics Education, Solar Physics, and the Space Science and Engineering Lab.

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Internal magnetic field structures observed by PSP/WISPR in a filament-related coronal mass ejection
    (EDP Sciences, 2024-05) Cappello, G. M.; Temmer, M.; Vourlidas, A.; Braga, C.; Liewer, P. C.; Qiu, J.; Stenborg, G.; Kouloumvakos, A.; Veronig, A. M.; Bothner, V.
    Context. We investigated the coronal mass ejection (CME) related to an eruptive filament over the southwestern solar limb on December 8, 2022, at around 8 UT. We tracked localized density enhancements reflecting the magnetic structures using white-light data taken with the Wide-field Instrument for Solar PRobe (WISPR) aboard the Parker Solar Probe (PSP). Aims. We aim to investigate the 3D location, morphology and evolution of the internal magnetic fine structures of CMEs. Specifically, we focused on the physical origin of the features in the WISPR images, how the white-light structures evolve over time, and their relationship with the source region, filament, and the flux rope. Methods. The fast tangential motion of the PSP spacecraft during its perihelion permits a single event to be viewed from multiple angles in short times relative to the event’s evolution. Hence, three dimensional information of selected CME features can be derived from this single spacecraft using triangulation techniques. Results. We grouped small-scale structures with roughly similar speeds, longitude, and latitude into three distinct morphological groups. We found twisted magnetic field patterns close to the eastern leg of the CME that may be related to “horns” outlining the edges of the flux-rope cavity. We identified aligned thread-like bundles close to the western leg, and they may be related to confined density enhancements evolving during the filament eruption. High density blob-like features (magnetic islands) are widely spread in longitude (∼40°) close to the flanks and the rear part of the CME. We also note that the large-scale outer envelope of the CME, seen clearly from 1 AU, was not well observed by PSP. Conclusions. We demonstrate that CME flux ropes, apart from the blobs, may comprise different morphological groups with a cluster behavior; the blobs instead span a wide range of longitudes. This finding may hint at either the three-dimensionality of the post-CME current sheet (CS) or the influence of the ambient corona in the evolutionary behavior of the CS. Importantly, we show that the global appearance of the CME can be very different in WISPR (0.11–0.16 AU) and the instruments near 1 AU because of the shorter line-of-sight integration of WISPR.
  • Thumbnail Image
    Item
    The Role of Magnetic Shear in Reconnection-Driven Flare Energy Release
    (Cornell University, 2023-08) Qiu, J.; Alaoui, M.; Antiochos, S. K.; Dahlin, J. T.; Swisdak, M.; Drake, J. F.; Robison, A.; DeVore, C. R.; Uritsky, V. M.
    Using observations from the Solar Dynamics Observatory's Atmosphere Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager, we present novel measurements of the shear of post-reconnection flare loops (PRFLs) in SOL20141218T21:40 and study its evolution with respect to magnetic reconnection and flare emission. Two quasi-parallel ribbons form adjacent to the magnetic polarity inversion line (PIL), spreading in time first parallel to the PIL and then mostly in a perpendicular direction. We measure magnetic reconnection rate from the ribbon evolution, and also the shear angle of a large number of PRFLs observed in extreme ultraviolet passbands (≲1 MK). For the first time, the shear angle measurements are conducted using several complementary techniques allowing for a cross-validation of the results. In this flare, the total reconnection rate is much enhanced before a sharp increase of the hard X-ray emission, and the median shear decreases from 60∘-70∘ to 20∘, on a time scale of ten minutes. We find a correlation between the shear-modulated total reconnection rate and the non-thermal electron flux. These results confirm the strong-to-weak shear evolution suggested in previous observational studies and reproduced in numerical models, and also confirm that, in this flare, reconnection is not an efficient producer of energetic non-thermal electrons during the first ten minutes when the strongly sheared PRFLs are formed. We conclude that an intermediate shear angle, ≤40∘, is needed for efficient particle acceleration via reconnection, and we propose a theoretical interpretation.
  • Thumbnail Image
    Item
    Extracting the Heliographic Coordinates of Coronal Rays Using Images from WISPR/Parker Solar Probe
    (Springer Science and Business Media LLC, 2022-09) Liewer, P. C.; Qiu, J.; Ark, F.; Penteado, P.; Stenborg, G.; Vourlidas, A.; Hall, J. R.; Riley, P.
    The Wide-field Imager for Solar Probe (WISPR) onboard Parker Solar Probe (PSP), observing in white light, has a fixed angular field of view, extending from 13.5∘ to 108∘ from the Sun and approximately 50∘ in the transverse direction. In January 2021, on its seventh orbit, PSP crossed the heliospheric current sheet (HCS) near perihelion at a distance of 20 solar radii. At this time, WISPR observed a broad band of highly variable solar wind and multiple coronal rays. For six days around perihelion, PSP was moving with an angular velocity exceeding that of the Sun. During this period, WISPR was able to image coronal rays as PSP approached and then passed under or over them. We have developed a technique for using the multiple viewpoints of the coronal rays to determine their location (longitude and latitude) in a heliocentric coordinate system and used the technique to determine the coordinates of three coronal rays. The technique was validated by comparing the results to observations of the coronal rays from Solar and Heliophysics Observatory (SOHO)/Large Angle and Spectrometric COronagraph (LASCO)/C3 and Solar Terrestrial Relations Observatory (STEREO)-A/COR2. Comparison of the rays’ locations were also made with the HCS predicted by a 3D MHD model. In the future, results from this technique can be used to validate dynamic models of the corona.
  • Thumbnail Image
    Item
    Correlated Spatio-temporal Evolution of Extreme-Ultraviolet Ribbons and Hard X-Rays in a Solar Flare
    (American Astronomical Society, 2022-02) Naus, S. J.; Qiu, J.; DeVore, C. R.; Antiochos, S. K.; Dahlin, J. T.; Drake, J. F.; Swisdak, M.
    We analyze the structure and evolution of ribbons from the M7.3 SOL2014-04-18T13 flare using ultraviolet images from the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), magnetic data from the SDO/Helioseismic and Magnetic Imager, hard X-ray (HXR) images from the Reuven Ramaty High Energy Solar Spectroscopic Imager, and light curves from the Fermi/Gamma-ray Burst Monitor, in order to infer properties of coronal magnetic reconnection. As the event progresses, two flare ribbons spread away from the magnetic polarity inversion line. The width of the newly brightened front along the extension of the ribbon is highly intermittent in both space and time, presumably reflecting nonuniformities in the structure and/or dynamics of the flare current sheet. Furthermore, the ribbon width grows most rapidly in regions exhibiting concentrated nonthermal HXR emission, with sharp increases slightly preceding the HXR bursts. The light curve of the ultraviolet emission matches the HXR light curve at photon energies above 25 keV. In other regions the ribbon-width evolution and light curves do not temporally correlate with the HXR emission. This indicates that the production of nonthermal electrons is highly nonuniform within the flare current sheet. Our results suggest a strong connection between the production of nonthermal electrons and the locally enhanced perpendicular extent of flare ribbon fronts, which in turn reflects the inhomogeneous structure and/or reconnection dynamics of the current sheet. Despite this variability, the ribbon fronts remain nearly continuous, quasi-one-dimensional features. Thus, although the reconnecting coronal current sheets are highly structured, they remain quasi-two-dimensional and the magnetic energy release occurs systematically, rather than stochastically, through the volume of the reconnecting magnetic flux.
  • Thumbnail Image
    Item
    Evolution of a streamer-blowout CME as observed by imagers on Parker Solar Probe and the Solar Terrestrial Relations Observatory
    (EDP Sciences, 2021-06) Liewer, P. C.; Qiu, J.; Vourlidas, A.; Hall, J. R.; Penteado, P.
    Context. On 26–27 January 2020, the Wide-field Imager for Solar Probe on Parker Solar Probe (PSP) observed a coronal mass ejection (CME) from a distance of approximately 30 R⊙ as it passed through the instrument’s 95° field-of-view, providing an unprecedented view of the flux rope morphology of the CME’s internal structure. The same CME was seen by Solar Terrestrial Relations Observatory-Ahead (STEREO-A), beginning on 25 January. Aims. Our goal is to understand the origin and determine the trajectory of this CME. Methods. We analyzed data from three well-placed spacecrafts: PSP, STEREO-A, and Solar Dynamics Observatory (SDO). The CME trajectory was determined using a tracking-and-fitting technique and verified using simultaneous images of the CME propagation from STEREO-A. The fortuitous alignment with STEREO-A also provided views of coronal activity leading up to the eruption. Observations from SDO, in conjunction with potential magnetic field models of the corona, were used to analyze the coronal magnetic evolution for the three days leading up to the flux rope ejection from the corona on 25 January. Results. We found that the 25 January CME is likely the end result of a slow magnetic flux rope eruption that began on 23 January and was observed by STEREO-A/Extreme Ultraviolet Imager. The analysis of these observations suggest that the flux rope was apparently constrained in the corona for more than a day before its final ejection on 25 January. STEREO-A/COR2 observations of swelling and brightening of the overlying streamer for several hours prior to eruption on 25 January led us to classify this as a streamer-blowout CME. The analysis of the SDO data suggests that restructuring of the coronal magnetic fields caused by an emerging active region led to the final ejection of the flux rope.
  • Thumbnail Image
    Item
    Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
    (Springer Science and Business Media LLC, 2020-10) Liewer, P.C.; Qiu, J.; Penteado, P.; Hall, J.R.; Vourlidas, A.; Howard, R.A.
    The Wide-field Imager for Solar Probe (WISPR) onboard the Parker Solar Probe (PSP), observing in white light, has a fixed angular field of view, extending from 13.5∘ to 108∘ from the Sun and approximately 50∘ in the transverse direction. Because of the highly elliptical orbit of PSP, the physical extent of the imaged coronal region varies directly as the distance from the Sun, requiring new techniques for analysis of the motions of observed density features. Here, we present a technique for determining the 3D trajectory of CMEs and other coronal ejecta moving radially at a constant velocity by first tracking the motion in a sequence of images and then applying a curve-fitting procedure to determine the trajectory parameters (distance vs. time, velocity, longitude, and latitude). To validate the technique, we have determined the trajectory of two CMEs observed by WISPR that were also observed by another white-light imager, either the Solar and Heliophysics Observatory (SOHO) / Large Angle and Spectrometric COronagraph (LASCO)-C3 or the Solar Terrestrial Relations Observatory (STEREO)-A/HI1. The second viewpoint was used to verify the trajectory results from this new technique and help determine its uncertainty.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.