Physics

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/52

The Physics department is committed to education and research in physics, the study of the fundamental universal laws that govern the behavior of matter and energy, and the exploration of the consequences and applications of those laws. Our department is widely known for its excellent teaching and student mentoring. Our department plays an important role in the university’s Core Curriculum. We have strong academic programs with several options for undergraduate physics majors, leading to the B.S. degree, as well as graduate curricula leading to the M.S. and Ph.D. degrees. Our research groups span a variety of fields within physics. Our principal concentrations are in Astrophysics, Relativity, Gravitation and Cosmology, Condensed Matter Physics, Lasers and Optics, Physics Education, Solar Physics, and the Space Science and Engineering Lab.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Internal magnetic field structures observed by PSP/WISPR in a filament-related coronal mass ejection
    (EDP Sciences, 2024-05) Cappello, G. M.; Temmer, M.; Vourlidas, A.; Braga, C.; Liewer, P. C.; Qiu, J.; Stenborg, G.; Kouloumvakos, A.; Veronig, A. M.; Bothner, V.
    Context. We investigated the coronal mass ejection (CME) related to an eruptive filament over the southwestern solar limb on December 8, 2022, at around 8 UT. We tracked localized density enhancements reflecting the magnetic structures using white-light data taken with the Wide-field Instrument for Solar PRobe (WISPR) aboard the Parker Solar Probe (PSP). Aims. We aim to investigate the 3D location, morphology and evolution of the internal magnetic fine structures of CMEs. Specifically, we focused on the physical origin of the features in the WISPR images, how the white-light structures evolve over time, and their relationship with the source region, filament, and the flux rope. Methods. The fast tangential motion of the PSP spacecraft during its perihelion permits a single event to be viewed from multiple angles in short times relative to the event’s evolution. Hence, three dimensional information of selected CME features can be derived from this single spacecraft using triangulation techniques. Results. We grouped small-scale structures with roughly similar speeds, longitude, and latitude into three distinct morphological groups. We found twisted magnetic field patterns close to the eastern leg of the CME that may be related to “horns” outlining the edges of the flux-rope cavity. We identified aligned thread-like bundles close to the western leg, and they may be related to confined density enhancements evolving during the filament eruption. High density blob-like features (magnetic islands) are widely spread in longitude (∼40°) close to the flanks and the rear part of the CME. We also note that the large-scale outer envelope of the CME, seen clearly from 1 AU, was not well observed by PSP. Conclusions. We demonstrate that CME flux ropes, apart from the blobs, may comprise different morphological groups with a cluster behavior; the blobs instead span a wide range of longitudes. This finding may hint at either the three-dimensionality of the post-CME current sheet (CS) or the influence of the ambient corona in the evolutionary behavior of the CS. Importantly, we show that the global appearance of the CME can be very different in WISPR (0.11–0.16 AU) and the instruments near 1 AU because of the shorter line-of-sight integration of WISPR.
  • Thumbnail Image
    Item
    The Role of Magnetic Shear in Reconnection-Driven Flare Energy Release
    (Cornell University, 2023-08) Qiu, J.; Alaoui, M.; Antiochos, S. K.; Dahlin, J. T.; Swisdak, M.; Drake, J. F.; Robison, A.; DeVore, C. R.; Uritsky, V. M.
    Using observations from the Solar Dynamics Observatory's Atmosphere Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager, we present novel measurements of the shear of post-reconnection flare loops (PRFLs) in SOL20141218T21:40 and study its evolution with respect to magnetic reconnection and flare emission. Two quasi-parallel ribbons form adjacent to the magnetic polarity inversion line (PIL), spreading in time first parallel to the PIL and then mostly in a perpendicular direction. We measure magnetic reconnection rate from the ribbon evolution, and also the shear angle of a large number of PRFLs observed in extreme ultraviolet passbands (≲1 MK). For the first time, the shear angle measurements are conducted using several complementary techniques allowing for a cross-validation of the results. In this flare, the total reconnection rate is much enhanced before a sharp increase of the hard X-ray emission, and the median shear decreases from 60∘-70∘ to 20∘, on a time scale of ten minutes. We find a correlation between the shear-modulated total reconnection rate and the non-thermal electron flux. These results confirm the strong-to-weak shear evolution suggested in previous observational studies and reproduced in numerical models, and also confirm that, in this flare, reconnection is not an efficient producer of energetic non-thermal electrons during the first ten minutes when the strongly sheared PRFLs are formed. We conclude that an intermediate shear angle, ≤40∘, is needed for efficient particle acceleration via reconnection, and we propose a theoretical interpretation.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.