Physics

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/52

The Physics department is committed to education and research in physics, the study of the fundamental universal laws that govern the behavior of matter and energy, and the exploration of the consequences and applications of those laws. Our department is widely known for its excellent teaching and student mentoring. Our department plays an important role in the university’s Core Curriculum. We have strong academic programs with several options for undergraduate physics majors, leading to the B.S. degree, as well as graduate curricula leading to the M.S. and Ph.D. degrees. Our research groups span a variety of fields within physics. Our principal concentrations are in Astrophysics, Relativity, Gravitation and Cosmology, Condensed Matter Physics, Lasers and Optics, Physics Education, Solar Physics, and the Space Science and Engineering Lab.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Measurements of EUV Coronal Holes and Open Magnetic Flux
    (IOP Publishing, 2014-02) Lowder, Chris; Qiu, Jiong; Leamon, Robert; Liu, Y.
    Coronal holes are regions on the Sun’s surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extremeultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2–5)×1022 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010–2013 show coronal hole area coverage of 5%–10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2–4)×1022 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA–EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.