Physics
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/52
The Physics department is committed to education and research in physics, the study of the fundamental universal laws that govern the behavior of matter and energy, and the exploration of the consequences and applications of those laws. Our department is widely known for its excellent teaching and student mentoring. Our department plays an important role in the university’s Core Curriculum. We have strong academic programs with several options for undergraduate physics majors, leading to the B.S. degree, as well as graduate curricula leading to the M.S. and Ph.D. degrees. Our research groups span a variety of fields within physics. Our principal concentrations are in Astrophysics, Relativity, Gravitation and Cosmology, Condensed Matter Physics, Lasers and Optics, Physics Education, Solar Physics, and the Space Science and Engineering Lab.
Browse
61 results
Search Results
Item Six More Ultra-faint Milky Way Companions Discovered in the DECam Local Volume Exploration Survey(American Astronomical Society, 2023-07) Cerny, W.; Martínez-Vázquez, C. E.; Drlica-Wagner, A.; Pace, A. B.; Mutlu-Pakdil, B.; Li, T. S.; Riley, A. H.; Crnojević, D.; Bom, C. R.; Carballo-Bello, J. A.; Carlin, J. L.; Chiti, A.; Choi, Y.; Collins, M. L. M.; Darragh-Ford, E.; Ferguson, P. S.; Geha, M.; Martínez-Delgado, D.; Massana, P.; Mau, S.; Medina, G. E.; Muñoz, R. R.; Nadler, E. O.; Noël, N. E. D.; Olsen, K. A. G.; Pieres, A.; Sakowska, J. D.; Simon, J. D.; Stringfellow, G. S.; Tollerud, E. J.; Vivas, A. K.; Walker, A. R.; Wechsler, R. H.We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes (MV ≥ −3.2 mag) and old, metal-poor stellar populations (τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended (r1/2 > 15 pc), while the other three are compact (r1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems.Item Electrically tunable magnetic fluctuations in multilayered vanadium-doped tungsten diselenide(Springer Science and Business Media LLC, 2023-08) Nguyen, Lan-Anh T.; Jiang, Jinbao; Nguyen, Tuan Dung; Kim, Philip; Joo, Min-Kyu; Duong, Dinh Loc; Lee, Young HeeFluctuations are ubiquitous in magnetic materials and can cause random telegraph noise. Such noise is of potential use in systems such as spiking neuron devices, random number generators and probability bits. Here we report electrically tunable magnetic fluctuations and random telegraph noise in multilayered vanadium-doped tungsten diselenide (WSe2) using vertical tunnelling heterostructure devices composed of graphene/vanadium-doped WSe2/graphene and magnetoresistance measurements. We identify bistable magnetic states through discrete Gaussian peaks in the random telegraph noise histogram and the 1/f2 features of the noise power spectrum. Three categories of fluctuation are detected: small resistance fluctuations at high temperatures due to intralayer coupling between the magnetic domains; large resistance changes over a wide range of temperatures; and persistent large resistance changes at low temperatures due to magnetic interlayer coupling. We also show that the bistable state and cut-off frequency of the random telegraph noise can be modulated with an electric bias.Item Confident detection of doubly ionized thorium in the extreme Ap star CPD-62° 2717(Oxford University Press, 2023-05) Chojnowski, S Drew; Hubrig, Swetlana; Nidever, David L; Niemczura, Ewa; Labadie-Bartz, Jonathan; Mathys, Gautier; Hasselquist, StenDespite the Universe containing primordial thorium (Th) of sufficient abundance to appear in stellar spectra, detection of Th has to date been tentative and based on just a few weak and blended lines. Here, we present convincing evidence not only for the first Th detection in a magnetic chemically peculiar Ap star but also for the first detection of Th iii in a stellar spectrum. CPD-62° 2717 was initially recognized as a highly magnetized Ap star due to resolved magnetically split lines captured in H-band spectra from the SDSS/APOGEE survey. The star was subsequently pinpointed as extraordinarily peculiar when careful inspection of the H-band line content revealed the presence of five lines of Th iii, none of which are detected in the other ∼1500 APOGEE-observed Ap stars. Follow-up with the VLT + UVES confirmed a similarly peculiar optical spectrum featuring dozens of Th iii lines, among other peculiarities. Unlike past claims of Th detection, and owing to high-resolution observations of the strong (∼8–12 kG) magnetic field of CPD-62° 2717, the detection of Th iii can in this case be supported by matches between the observed and theoretical magnetic splitting patterns. Comparison of CPD-62° 2717 to stars for which Th overabundances have been previously reported (e.g. Przybylski’s Star) indicates that only for CPD-62° 2717 is the Th detection certain. Along with the focus on Th iii, we use time series measurements of the magnetic field modulus to constrain the rotation period of CPD-62° 2717 to ∼4.8 yr, thus establishing it as a new example of a superslowly rotating Ap star.Item The Role of Magnetic Shear in Reconnection-Driven Flare Energy Release(Cornell University, 2023-08) Qiu, J.; Alaoui, M.; Antiochos, S. K.; Dahlin, J. T.; Swisdak, M.; Drake, J. F.; Robison, A.; DeVore, C. R.; Uritsky, V. M.Using observations from the Solar Dynamics Observatory's Atmosphere Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager, we present novel measurements of the shear of post-reconnection flare loops (PRFLs) in SOL20141218T21:40 and study its evolution with respect to magnetic reconnection and flare emission. Two quasi-parallel ribbons form adjacent to the magnetic polarity inversion line (PIL), spreading in time first parallel to the PIL and then mostly in a perpendicular direction. We measure magnetic reconnection rate from the ribbon evolution, and also the shear angle of a large number of PRFLs observed in extreme ultraviolet passbands (≲1 MK). For the first time, the shear angle measurements are conducted using several complementary techniques allowing for a cross-validation of the results. In this flare, the total reconnection rate is much enhanced before a sharp increase of the hard X-ray emission, and the median shear decreases from 60∘-70∘ to 20∘, on a time scale of ten minutes. We find a correlation between the shear-modulated total reconnection rate and the non-thermal electron flux. These results confirm the strong-to-weak shear evolution suggested in previous observational studies and reproduced in numerical models, and also confirm that, in this flare, reconnection is not an efficient producer of energetic non-thermal electrons during the first ten minutes when the strongly sheared PRFLs are formed. We conclude that an intermediate shear angle, ≤40∘, is needed for efficient particle acceleration via reconnection, and we propose a theoretical interpretation.Item Origins of the Evil Eye: M64's Stellar Halo Reveals the Recent Accretion of an SMC-mass Satellite(American Astronomical Society, 2023-06) Smercina, Adam; Bell, Eric F.; Price, Paul A.; Bailin, Jeremy; Dalcanton, Julianne J.; de Jong, Roelof S.; D’Souza, Richard; Gozman, Katya; Jang, In Sung; Monachesi, Antonela; Nidever, David; Slater, Colin T.M64, often called the "Evil Eye" galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a "flyby" interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell of M⋆ = 1.80 ± 0.54 × 108M⊙ and [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108M⊙ for the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite of M⋆,prog ≃ 5 × 108M⊙. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.Item JWST’s PEARLS: TN J1338–1942 – I. Extreme jet-triggered star formation in a z = 4.11 luminous radio galaxy(Oxford University Press, 2023-04) Duncan, Kenneth J; Windhorst, Rogier A; Koekemoer, Anton M; Röttgering, Huub J A; Cohen, Jansen; Summers, Jake; Tompkins, Scott; Hutchison, Taylor A; Conselice, Christopher J; Driver, Simon P; Yan, Haojing; Adams, Nathan J; Cheng, Cheng; Coe, Dan; Diego, Jose M; Dole, Hervé; Frye, Brenda; Gim, Hansung B; Grogin, Norman A; Holwerda, Benne W; Lim, Jeremy; Marshall, Madeline A; Nonino, Mario; Pirzkal, Nor; Robotham, Aaron; Ryan, Russell E; Willmer, Christopher N AWe present the first JWST observations of the z = 4.11 luminous radio galaxy TN J1338–1942, obtained as part of the ‘Prime Extragalactic Areas for Reionization and Lensing Science’ (‘PEARLS’) project. Our NIRCam observations, designed to probe the key rest-frame optical continuum and emission line features at this redshift, enable resolved spectral energy distribution modelling that incorporates both a range of stellar population assumptions and radiative shock models. With an estimated stellar mass of log10(M/M⊙) ∼ 10.9, TN J1338–1942 is confirmed to be one of the most massive galaxies known at this epoch. Our observations also reveal extremely high equivalent-width nebular emission coincident with the luminous AGN jets that is best fit by radiative shocks surrounded by extensive recent star formation. We estimate the total star-formation rate (SFR) could be as high as ∼1600M⊙yr−1 , with the SFR that we attribute to the jet induced burst conservatively ≳500M⊙yr−1 . The mass-weighted age of the star-formation, tmass < 4 Myr, is consistent with the likely age of the jets responsible for the triggered activity and significantly younger than that measured in the core of the host galaxy. The extreme scale of the potential jet-triggered star-formation activity indicates the potential importance of positive AGN feedback in the earliest stages of massive galaxy formation, with our observations also illustrating the extraordinary prospects for detailed studies of high-redshift galaxies with JWST.Item Structure of the Plasma near the Heliospheric Current Sheet as Seen by WISPR/Parker Solar Probe from inside the Streamer Belt(IOP Publising, 2023-05) Liewer, Paulett C.; Vourlidas, Angelos; Stenborg, Guillermo; Howard, Russell A.; Qiu, Jiong; Penteado, Paulo; Panasenco, Olga; Braga, Carlos R.Parker Solar Probe (PSP) crossed the heliospheric current sheet (HCS) near the perihelion on encounters E8 and E11, enabling the Wide-field Imager for Solar Probe (WISPR) to image the streamer belt plasma in high resolution while flying through it. With perihelia of 16 R⊙ and 13 R⊙ for E8 and E11, respectively, WISPR images enable investigation of the structure of density encasing the HCS at much higher resolution than reported previously. As PSP flies closer to the Sun, fine-scale structures are resolved within the coronal rays of the streamer belt. Near the HCS, WISPR observes a fan of rays of various sizes and brightnesses, indicating large density variations in the HCS plasma sheet transverse to the radial direction. Near the perihelion, when PSP's speed exceeds the solar corotation speed, some rays exhibit large changes in apparent latitude as the HCS is encountered, and rays pass over and under the spacecraft. The multiple viewpoints provided during the HCS crossing enable us to extract the coordinates of a few rays in a heliocentric frame. The rays were found to lie near the HCS from a PFSS model. We compare their locations to the location of the streamers as seen in synoptic maps from the Large Angle and Spectrometric Coronagraph, and find that the rays generally fall within the bright streamer bands seen in these maps, which confirms that they are features of the streamer belt plasma. We speculate that the density variations in the helmet streamer plasma result from continuous interchange reconnection along the coronal hole boundaries.Item The Imprint of Clump Formation at High Redshift. II. The Chemistry of the Bulge(American Astronomical Society, 2023-04) Debattista, Victor P.; Liddicott, David J.; Gonzalez, Oscar A.; Beraldo e Silva, Leandro; Amarante, João A. S.; Lazar, Ilin; Zoccali, Manuela; Valenti, Elena; Fisher, Deanne B.; Khachaturyants, Tigran; Nidever, David L.; Quinn, Thomas R.; Du, Min; Kassin, SusanIn Paper I, we showed that clumps in high-redshift galaxies, having a high star formation rate density (ΣSFR), produce disks with two tracks in the [Fe/H]–[α/Fe] chemical space, similar to that of the Milky Way's (MW's) thin+thick disks. Here we investigate the effect of clumps on the bulge's chemistry. The chemistry of the MW's bulge is comprised of a single track with two density peaks separated by a trough. We show that the bulge chemistry of an N-body + smoothed particle hydrodynamics clumpy simulation also has a single track. Star formation within the bulge is itself in the high-ΣSFR clumpy mode, which ensures that the bulge's chemical track follows that of the thick disk at low [Fe/H] and then extends to high [Fe/H], where it peaks. The peak at low metallicity instead is comprised of a mixture of in situ stars and stars accreted via clumps. As a result, the trough between the peaks occurs at the end of the thick disk track. We find that the high-metallicity peak dominates near the mid-plane and declines in relative importance with height, as in the MW. The bulge is already rapidly rotating by the end of the clump epoch, with higher rotation at low [α/Fe]. Thus clumpy star formation is able to simultaneously explain the chemodynamic trends of the MW's bulge, thin+thick disks, and the splash.Item Ambipolar Heating of Magnetars(American Astronomical Society, 2023-03) Tsuruta, Sachiko; Kelly, Madeline J.; Nomoto, Ken’ichi; Mori, Kanji; Teter, Marcus; Liebmann, Andrew C.Magnetars, neutron stars thought to be with ultrastrong magnetic fields of 1014–15 G, are observed to be much hotter than ordinary pulsars with ∼1012 G, and additional heating sources are required. One possibility is heating by the ambipolar diffusion in the stellar core. This scenario is examined by calculating the models using the relativistic thermal evolutionary code without making the isothermal approximation. The results show that this scenario can be consistent with most of the observed magnetar temperature data.Item NuSTAR Observations of a Heavily X-Ray-obscured AGN in the Dwarf Galaxy J144013+024744(American Astronomical Society, 2023-01) Ansh, Shrey; Chen, Chien-Ting J.; Brandt, W. N.; Hood, Carol E.; Kammoun, E. S.; Lansbury, G.; Paltani, Stéphane; Reines, Amy E.; Ricci, C.; Swartz, Douglas A.; Trump, Jonathan R.; Vito, F.; Hickox, Ryan C.We present a multiwavelength analysis of the dwarf Seyfert 2 galaxy J144013+024744, a candidate obscured active galactic nucleus (AGN) thought to be powered by an intermediate-mass black hole (IMBH, M • ≈ 104−106 M ⊙) of mass M • ∼ 105.2 M ⊙. To study its X-ray properties, we targeted J144013+024744 with NuSTAR for ≈100 ks. The X-ray spectrum was fitted with an absorbed power law, Pexmon, and a physical model (RXTorus). A Bayesian X-ray analysis was performed to estimate the posteriors. The phenomenological and the physical models suggest the AGN to be heavily obscured by a column density of N H = (3.4–7.0) × 1023 cm−2. In particular, the RXTorus model with a subsolar metallicity suggests the obscuring column to be almost Compton-thick. We compared the 2–10 keV intrinsic X-ray luminosity with the inferred X-ray luminosities based on empirical scaling relations for unobscured AGNs using L [Oiv] 25.89 μm, L [Oiii] λ5007, and L 6μm and found that the high-excitation [Oiv] line provides a better estimate of the intrinsic 2–10 keV X-ray luminosity ( L 2 – 10 int ∼ 10 41.41 erg s−1). Our results suggest that J144013+024744 is the first type 2 dwarf galaxy that shows X-ray spectroscopic evidence for obscuration. The column density that we estimated is among the highest measured to date for IMBH-powered AGNs, implying that a typical AGN torus geometry might extend to the low-mass end. This work has implications for constraining the BH occupation fraction in dwarf galaxies using X-ray observations.