College of Letters & Science
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/37
The College of Letters and Science, the largest center for learning, teaching and research at Montana State University, offers students an excellent liberal arts and sciences education in nearly 50 majors, 25 minors and over 25 graduate degrees within the four areas of the humanities, natural sciences, mathematics and social sciences.
Browse
2 results
Search Results
Item Asynchrony between solitary bee emergence and flower availability reduces flower visitation rate and may affect offspring size(Elsevier, 2021-08) Slominski, Anthony H.; Burkle, Laura A.Climate change can disrupt plant-pollinator interactions when shifts in the timing of pollinator activity and flowering occur unequally (i.e., phenological asynchrony). Phenological asynchrony between spring-emerging solitary bees and spring-flowering plants may cause bees to experience food deprivation that can affect their reproductive success. However, the mechanisms underlying the effects of food deprivation on solitary bee reproduction remain unknown. We investigated 1) whether food deprivation caused by phenological asynchrony affects solitary bee reproduction by influencing female lifespan and/or visitation to flowers, and 2) the relationship between the magnitude of asynchrony and bee responses. We simulated phenological asynchrony by depriving emerged female Osmia cornifrons (a spring-active solitary bee species) of nectar and pollen for 0 to 16 days. Following asynchrony treatments, we used flight cages to monitor 1) post-treatment female lifespan, 2) flower visitation, and 3) reproduction (i.e., total offspring, offspring weight, sex ratio). We found that post-treatment female lifespan was not affected by phenological asynchrony treatments, but that flower visitation rate and offspring weight decreased as the magnitude of asynchrony increased. Due to low offspring production and a lack of female offspring across treatments, we were unable to assess the effects of phenological asynchrony on total offspring produced or sex ratio. Findings suggest that post-emergence food deprivation caused by phenological asynchrony may affect offspring size by influencing nest-provisioning rates. In solitary bees, body size influences wintering survival, fecundity, and mating success. Thus, phenological asynchrony may have consequences for solitary bee populations that stem from reduced flower visitation rates, and these consequences may increase as the magnitude of asynchrony increases. Because many wild flowering plants and crops rely on pollination services provided by bees for reproductive success, bee responses to phenological asynchrony may also affect wild plant biodiversity and crop yields.Item Growth and physiological responses of subalpine forbs to nitrogen and soil moisture: investigating the potential roles of plant functional traits(2018-06) Slominski, Anthony H.; German, Zac; Burkle, Laura A.Anthropogenic inputs of biologically available nitrogen (N) and climate change are simultaneously altering N and soil moisture availability in terrestrial ecosystems. Yet, plant responses to concurrent changes in both N and soil moisture in non-grassland ecosystems remain poorly understood. Our objective was to investigate how rooting depth and N-fixing ability—two functional traits we expected to mediate soil moisture and N limitations—influence forb responses to N and soil moisture availability in the Rocky Mountains USA. We assessed the growth and physiological responses (i.e., chlorophyll fluorescence, transpiration rate, and floral display) of four subalpine forb species to N additions across a naturally-occurring soil moisture gradient during one growing season. Soil moisture had a stronger positive effect on growth in shallow-rooted species and N additions had a stronger positive effect on photosynthetic capacity in species without N-fixing abilities. Transpiration rates were not consistent with soil moisture limitations expected for shallow-rooted species, and soil moisture and N had a neutral or negative influence on maximum floral displays across species. Nitrogen and soil moisture appeared to each limit separate response variables in some cases and we did not observe any N × soil moisture interactions. These findings suggest that shallow-rooted species may be more vulnerable to increased drought severity and that increased N availability may disproportionately benefit species without N-fixing abilities. However, mixed support for our hypotheses suggests that environmental conditions and functional traits not evaluated here likely influence subalpine plant responses to soil moisture and N availability.