College of Letters & Science

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/37

The College of Letters and Science, the largest center for learning, teaching and research at Montana State University, offers students an excellent liberal arts and sciences education in nearly 50 majors, 25 minors and over 25 graduate degrees within the four areas of the humanities, natural sciences, mathematics and social sciences.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    EPR study of the symmetry breaking effect in ferroelectric cesium dihydrogen phosphate doped with Cr5+ ions
    (1984-11) Waplak, S.; Schmidt, V. Hugo
    The (PO4)3− units in a CsH2PO4 (CDP) crystal were replaced in a small fraction of sites by (CrO4)3− groups and the EPR of the Cr5+ center was investigated. Splitting of the EPR line appears at T∗c=245 K, 91 K higher that the ferroelectric transition temperature Tc=154 K. The electronic wave function of Cr5+ (3d1) is identified as dx2−y2. The dx2−y2 function couples with the near protons and the reorientation of this unit in the two possible configurations occurs in the paraelectric phase and breaks the symmetry far above Tc. The observed correlation time 10−9 sec and associated activation energy ΔU=0.215 eV are discussed.
  • Thumbnail Image
    Item
    EPR investigation of Cu2+ tetramers in ferroelectric CsH2PO4
    (1985-07) Waplak, S.; Schmidt, V. Hugo; Drumheller, John E.
    EPR study of CsH2PO4 (CDP) single crystals with 0.005 mol % of Cu2+ at room temperature reveals isolated Cu2+ (S=(1/2)) complexes with four ligand coordination and spin Hamiltonian parameters gpara=2.2575, g⊥=2.1866, Apara=30 G, and A⊥=27 G. At temperatures below 250 K the spectra were observed to have fine structure and are described as arising from a Cu2+ tetramer with effective spin S=2 and spin Hamiltonian parameters D=0.181 cm−1, E=-0.081 cm−1, a=0.001 cm−1, b=0, and c=-0.021 cm−1. Also reported are transitions within the S=1 multiplet of the tetramer, and a microscopic model of superexchange interaction has been used to evaluate the parameters Dx=0.543 cm−1 and Ex=-0.159 cm−1. A tetramer model as well as a temperature dependence of the ratio of tetramer–to–single-ion intensity is presented.
  • Thumbnail Image
    Item
    EPR determination of three-dimensional correlations below the ferroelectric phase transition in pseudo-one-dimensional CsH2PO4:Cu2+
    (1986-11) Waplak, S.; Schmidt, V. Hugo; Drumheller, John E.
    The polarization fluctuations of ferroelectric CsH2PO4 above Tc are generally classified as a quasi-one-dimensional phenomenon. The temperature dependence of the EPR line splitting of the S=1 state of the Cu2+ tetramer, however, exhibits a critical exponent below Tc of β=0.5 indicating that the correlations associated with the order parameter are three dimensional below Tc.
  • Thumbnail Image
    Item
    Proton-glass dielectric behavior of a Rb0.52(ND4)0.48D2PO4 crystal
    (1984-09) Schmidt, V. Hugo; Waplak, S.; Hutton, Stuart L.; Schnackenberg, P. T.
    The c axis dielectric permittivity at 1 kHz was measured for a 71.4 at.% deuterated crystal of Rb0.52(ND4)0.48D2PO4 from 4 to 300 K. The permittivity follows, down to 150 K, a Curie-Weiss law with a Curie temperature of 0 K. Below this temperature the susceptibility rounds off to a broad maximum at 80 K, and below 50 K, starts decreasing rapidly. Between 25 and 40 K, the inverse susceptibility obeys a Curie-Weiss law which extrapolates to zero at 43 K. At 4 K, the relative permittivity flattens out to a value of 11.5. The results show general agreement with predictions of a Landau model giving a second-order transition to an antiferroelectric state at 43 K, but the rounding of the susceptibility peak over a very wide temperature range agrees better with predictions of a model which considers the asymmetry of the typical hydrogen bond caused by the crystal being only partly ammoniated. Permittivity results of Courtens and of Iida and Terauchi for undeuterated crystals with 35% and 60% ammonium, respectively, are also compared with predictions of this second model.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.