College of Letters & Science

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/37

The College of Letters and Science, the largest center for learning, teaching and research at Montana State University, offers students an excellent liberal arts and sciences education in nearly 50 majors, 25 minors and over 25 graduate degrees within the four areas of the humanities, natural sciences, mathematics and social sciences.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Unveiling the purely young star formation history of the SMC’s northeastern shell from colour–magnitude diagram fitting
    (Oxford University Press, 2024-07) Sakowska, J.D.; Noël, Noëlia E. D.; Ruiz-Lara, T.; Gallart, Carme; Massana, Pol; Nidever, David L.; Cassisi, Santi; Correa-Amaro, Patricio; Choi, Yumi; Besla, Gurtina; Erkal, Denis; Martínez‐Delgado, David; Monelli, M.; Olsen, Knut; Stringfellow, Guy S.
    We obtain a quantitative star formation history (SFH) of a shell-like structure (‘shell’) located in the northeastern part of the Small Magellanic Cloud (SMC). We use the Survey of the MAgellanic Stellar History to derive colour–magnitude diagrams (CMDs), reaching below the oldest main-sequence turnoff, from which we compute the SFHs with CMD-fitting techniques. We present, for the first time, a novel technique that uses red clump (RC) stars from the CMDs to assess and account for the SMC’s line-of-sight depth effect present during the SFH derivation. We find that accounting for this effect recovers a more accurate SFH. We quantify an 7 kpc line-of-sight depth present in the CMDs, in good agreement with depth estimates from RC stars in the northeastern SMC. By isolating the stellar content of the northeastern shell and incorporating the line-of-sight depth into our calculations, we obtain an unprecedentedly detailed SFH. We find that the northeastern shell is primarily composed of stars younger than 500 Myr, with significant star formation enhancements around 250 and 450 Myr. These young stars are the main contributors to the shell’s structure. We show synchronicity between the northeastern shell’s SFH with the Large Magellanic Cloud’s (LMC) northern arm, which we attribute to the interaction history of the SMC with the LMC and the Milky Way (MW) over the past 500 Myr. Our results highlight the complex interplay of ram pressure stripping and the influence of the MW’s circumgalactic medium in shaping the SMC’s northeastern shell.
  • Thumbnail Image
    Item
    Toward a More Complex Understanding of Natal Super Star Clusters with Multiwavelength Observations
    (American Astronomical Society, 2021-09) Costa, Allison H.; Johnson, Kelsey E.; Indebetouw, Remy; Finn, Molly K.; Brogan, Crystal L.; Reines, Amy
    Henize 2–10 (He 2–10) is a nearby (D = 9 Mpc) starbursting blue compact dwarf galaxy that boasts a high star formation rate and a low-luminosity active galactic nucleus. He 2–10 is also one of the first galaxies in which embedded super star clusters (SSCs) were discovered. SSCs are massive, compact star clusters that will impact their host galaxies dramatically when their massive stars evolve. Here, we discuss radio, submillimeter, and infrared observations of He 2–10 from 1.87 μm to 6 cm in high angular resolution (∼0.3''), which allows us to disentangle individual clusters from aggregate complexes as identified at lower resolution. These results indicate the importance of spatial resolution to characterize SSCs, as low resolution studies of SSCs average over aggregate complexes that may host SSCs at different stages of evolution. We explore the thermal, nonthermal, and dust emission associated with the clusters along with dense molecular tracers to construct a holistic review of the natal SSCs that have yet to dramatically disrupt their parent molecular clouds. We assess the production rate of ionizing photons, extinction, total mass, and the star formation efficiency (SFE) associated with the clusters. Notably, we find that the SFE for the some of the natal clusters is high (>70%), which suggests that these clusters could remain bound even after the gas is dispersed from the system from stellar feedback mechanisms. If they remain bound, these SSCs could survive to become objects indistinguishable from globular clusters.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.