College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Enhanced Rice Growth is Conferred by Increased Leaf ADP-Glucose Pyrophosphorylase Activity
    (2014-10) Schlosser, Alanna J.; Martin, John M.; Beecher, Brian S.; Giroux, Michael J.
    Modification of leaf starch levels may be employed in attempts to increase cereal yield. Few studies have examined leaf starch as a plant biomass limiting factor. Here we test the hypothesis that rice plant productivity may be increased by increasing leaf starch. Starch biosynthesis is controlled by the heterotetrameric rate-limiting enzyme ADP-glucose pyrophosphorylase (AGPase). Rice variety Nipponbare was transformed with a modified form of the maize endosperm AGPase large subunit gene, Sh2r6hs, as well as with the small subunit gene, Bt2, under control of a rice RuBisCO small subunit promoter. RNA sequencing results indicated that Sh2r6hs and Bt2 transcript levels were each greater than 20 times that of the native genes. Increased total AGPase activity was correlated with higher leaf starch accumulation at the end of the day. Yield trials of T1 derived homozygous plants indicate that increased leaf AGPase leads to a 29% increase in plant biomass under the conditions tested without changing the rate of photosynthesis while significantly reducing leaf transpiration and conductance. Additionally, functional annotation clustering of significantly up and down regulated transcripts reveals areas of protein metabolism, specifically protein biosynthesis, transport, and localization, that were altered in response to increased leaf starch. Together, these findings indicate plant growth is limited by native levels of leaf starch and that it is possible to increase plant yield via the starch biosynthesis pathway.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.