College of Agriculture
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4
As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.
Browse
10 results
Search Results
Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.Item Dryland Organic Farming Partially Offsets Negative Effects of Highly Simplified Agricultural Landscapes on Forbs, Bees, and Bee-Flower Networks(2019-08-19) Adhikari, Subodh; Burkle, Laura A.; O'Neill, Kevin M.; Delphia, Casey M.; Weaver, David K.; Menalled, Fabian D.Industrialized farming practices result in simplified agricultural landscapes, reduced biodiversity, and degraded species-interaction networks. Thus far, most research assessing the combined effects of farming systems and landscape complexity on beneficial insects has been conducted in relatively diversified and mesic systems and may not represent the large-scale, monoculture-based dryland agriculture that dominates many regions worldwide. Specifically, the effects of farming systems on forbs, bees, and their interactions are poorly understood in highly simplified dryland landscapes such as those in the Northern Great Plains, United States, an area globally important for conventional and organic small grain, pulse, forage, and oilseed production. During a 3-yr (2013-2015) study, we assessed 1) the effects of dryland no-till conventional and tilled organic farming on forbs, bees, and bee-flower networks and 2) the relationship between natural habitat and bee abundance. Flower density and richness were greater in tilled organic fields than in no-till conventional fields, and forb community composition differed between farming systems. We observed high bee diversity (109 taxa) in this highly simplified landscape, and bee abundance, richness, and community composition were similar between systems. Compared with tilled organic fields, bee-flower interactions in no-till conventional fields were poorly connected, suggesting these systems maintain relatively impoverished plant-pollinator networks. Natural habitat (11% of the landscape) did not affect small-bodied bee abundance in either farming system but positively affected large-bodied bees within 2,000 m of crop-field centers. In highly simplified agricultural landscapes, dryland organic farming and no-till conventional farming together support relatively high bee diversity, presumably because dryland organic farming enhances floral resources and bee-flower networks, and no-till management in conventional farming provides undisturbed ground-nesting habitats for wild bees (Hymenoptera: Apoidea).Item Ground-Dwelling Arthropod Community Response to Livestock Grazing: Implications for Avian Conservation(2019-08) Goosey, Hayes B.; Smith, Joseph T.; O'Neill, Kevin M.; Naugle, David E.Terrestrial arthropods are a critical component of rangeland ecosystems that convert primary production into resources for higher trophic levels. During spring and summer, select arthropod taxa are the primary food of breeding prairie birds, of which many are imperiled in North America. Livestock grazing is globally the most widespread rangeland use and can affect arthropod communities directly or indirectly through herbivory. To examine effects of management on arthropod community structure and avian food availability, we studied ground-dwelling arthropods on grazed and ungrazed sagebrush rangelands of central Montana. From 2012 to 2015, samples were taken from lands managed as part of a rest-rotation grazing program and from idle lands where livestock grazing has been absent for over a decade. Bird-food arthropods were twice as prevalent in managed pastures despite the doubling of overall activity-density of arthropods in idle pastures. Activity-density on idled lands was largely driven by a tripling of detritivores and a doubling in predators. Predator community structure was simplified on idled lands, where Lycosid spiders increased by fivefold. In contrast, managed lands supported a more diverse assemblage of ground-dwelling arthropods, which may be particularly beneficial for birds in these landscapes if, for example, diversity promotes temporal stability in this critical food resource. Our results suggest that periodic disturbance may enhance arthropod diversity, and that birds may benefit from livestock grazing with periodic rest or deferment.Item Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana(2019-01) Delphia, Casey M.; Griswold, Terry; Reese, Elizabeth G.; O'Neill, Kevin M.; Burkle, Laura A.Background: Over three years (2013-2015), we sampled bees using nets and bowl traps on four diversified vegetable farms in Gallatin County, Montana, USA, as part of a study evaluating the use of wildflower strips for supporting wild bees and crop pollination services on farmlands (Delphia et al. In prep). We document 202 species and morphospecies from 32 genera within five families, of which 25 species represent the first published state records for Montana. This study increases our overall understanding of the distribution of wild bee species associated with agroecosystems of the northern US Rockies, which is important for efforts aimed at conserving bee biodiversity and supporting sustainable crop pollination systems on farmlands. New information: We provide a species list of wild bees associated with diversified farmlands in Montana and increase the number of published bee species records in the state from 374 to at least 399. The list includes new distributional records for 25 wild bee species, including two species that represent considerable expansions of their known ranges, Lasioglossum (Dialictus) clematisellum (Cockerell 1904) with previously published records from New Mexico, Arizona, California and Utah and Melissodes (Eumelissodes) niveus Robertson 1895 which was reported to range from New York to Minnesota and Kansas, south to North Carolina, Alabama and Mississippi.Item Acute Toxicity of Permethrin, Deltamethrin, and Etofenprox to the Alfalfa Leafcutting Bee(2018-05) Piccolomini, Alyssa M.; Whiten, Shavonn R.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.Current regulatory requirements for insecticide toxicity to nontarget insects focus on the honey bee, Apis mellifera (L.; Hymenoptera: Apidae), but this species cannot represent all insect pollinator species in terms of response to insecticides. Therefore, we characterized the toxicity of pyrethroid insecticides used for adult mosquito management (permethrin, deltamethrin, and etofenprox) on a nontarget insect, the adult alfalfa leafcutting bee, Megachile rotundata (F.; Hymenoptera: Megachilidae) in two separate studies. In the first study, the doses causing 50 and 90% mortality (LD50 and LD90, respectively) were used as endpoints and 2-d-old adult females were exposed to eight concentrations ranging from 0.0075 to 0.076 μg/bee for permethrin and etofenprox, and 0.0013–0.0075 μg/bee for deltamethrin. For the second study, respiration rates of female M. rotundata were also recorded for 2 h after bees were dosed at the LD50 values to give an indication of stress response. Results indicated a relatively similar LD50 for permethrin and etofenprox, 0.057 and 0.051 μg/bee, respectively, and a more toxic response, 0.0016 μg/bee for deltamethrin. Comparatively, female A. mellifera workers have a LD50 value of 0.024 μg/bee for permethrin and 0.015 μg/bee for etofenprox indicating that female M. rotundata are less susceptible to topical doses of these insecticides, except for deltamethrin, where both A. mellifera and M. rotundata have an identical LD50 of 0.0016 μg/bee. Respiration rates comparing each active ingredient to control groups, as well as rates between each active ingredient, were statistically different (P < 0.0001). The addition of these results to existing information on A. mellifera may provide more insights on how other economically beneficial and nontarget bees respond to pyrethroids.Item Effects of an Ultra-low-Volume Application of Etofenprox for Mosquito Management on Megachile rotundata (Hymenoptera: Megachilidae) Larvae and Adults in an Agricultural Setting(2018-02) Piccolomini, Alyssa M.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.The alfalfa leafcutting bee, Megachile rotundata F. (Hymenoptera: Megachilidae), is one of the most intensively managed solitary bees and greatly contributes to alfalfa production in both the United States and Canada. Although production of certain commodities, especially alfalfa seed, has become increasingly dependent on this species\' pollination proficiency, little information is known about how M. rotundata is affected by insecticide exposure. To better understand the risk posed to M. rotundata by the increasing use of insecticides to manage mosquitoes, we conducted field experiments that directly exposed M. rotundata nests, adults, and larvae to a pyrethroid insecticide via a ground-based ultra-low-volume (ULV) aerosol generator. We directly targeted nest shelters with Zenivex E20 (etofenprox) at a half-maximum rate of 0.0032 kg/ha at dusk and then observed larval mortality, adult mortality, and the total number of completed nests for both the treated and control groups. There was no significant difference in the proportion of dead (P = 0.99) and alive (P = 0.23) larvae when the control group was compared with the treated group. We also did not observe a significant difference in the number of emerged adults reared from the treated shelters (P = 0.22 and 0.50 for females and males, respectively), and the number of completed cells after exposure to the insecticides continued to increase throughout the summer, indicating that provisioning adults were not affected by the insecticide treatment. The results from this study suggest that the amount of insecticide reaching nest shelters may not be sufficient to cause significant mortality.Item Integration of sheep grazing for cover crop termination into market gardens: Agronomic consequences of an ecologically based management strategy(2016-09) McKenzie, Sean C.; Goosey, Hayes B.; O'Neill, Kevin M.; Menalled, Fabian D.Cover crops are suites of non-marketable plants grown to improve soil tilth and reduce erosion. Despite these agronomic benefits, the use of cover crops is often limited because they do not provide a direct source of revenue for producers. Integrating livestock to graze cover crops could provide both an expeditious method for cover crop termination and an alternative source of revenue. However, there has been little research on the agronomic impacts of grazing for cover crop termination, especially in horticultural market-gardens. We conducted a 3-year study comparing the effects of sheep grazing to terminate a four species cover crop (buckwheat, sweetclover, peas and beets) with those of mowing on soil quality indicators, cover crop termination efficacy, and subsequent cash-crop yields. In addition, we tested the nutritional quality of the cover crop as forage. Compared with mowing, sheep grazing did not affect soil chemistry, temperature or moisture. Our study demonstrates that sheep grazing removed more cover crop biomass than mowing at termination. The assessment of nutritional indices suggests that the four-species cover crop mixture could provide high-quality forage with a potential value of US$144.00–481.80 ha−1 of direct revenue as a grazing lease. Cash-crop yields did not differ between previously grazed and previously mowed plots in the subsequent growing season. We conclude that integrating sheep grazing into market vegetable garden operations could make cover crops more economically viable without having adverse effects on subsequent cash crops.Item Bumble Bees (Hymenoptera: Apidae) of Montana(2017-09) Dolan, Amelia C.; Delphia, Casey M.; O'Neill, Kevin M.; Ivie, Michael A.Montana supports a diverse assemblage of bumble bees (Bombus Latreille) due to its size, landscape diversity, and location at the junction of known geographic ranges of North American species. We compiled the first inventory of Bombus species in Montana, using records from 25 natural history collections and labs engaged in bee research, collected over the past 125 years, as well as specimens collected specifically for this project during the summer of 2015. Over 12,000 records are included, with 28 species of Bombus now confirmed in the state. Based on information from nearby regions, four additional species are predicted to occur in Montana. Of the 28 species, Bombus bimaculatus Cresson and Bombus borealis Kirby are new state records. The presence of B. borealis was previously predicted, but the presence of B. bimaculatus in Montana represents a substantial extension of its previously reported range. Four additional \ eastern\" bumble bee species are recorded from the state, and three species pairs thought to replace one another from the eastern to western United States are now known to be sympatric in Montana. Additionally, our data are consistent with reported declines in populations of Bombus occidentalis Greene and Bombus suckleyi Greene, highlighting a need for targeted surveys of these two species in Montana."Item Impact of integrated sheep grazing for cover crop termination on weed and ground beetle (Coleoptera:Carabidae) communities(2016-02) McKenzie, Sean C.; Goosey, Hayes B.; O'Neill, Kevin M.; Menalled, Fabian D.Aim: To investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUEt) and transpiration-based inherent water-use efficiency (IWUEt). Location: Global terrestrial ecosystems. Methods: We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Results: Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6 g C m−2 mm−1 lower than the simulations from four process-based models (2.0 ± 0.3 g C m−2 mm−1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50° N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUEt shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUEt, the product of WUEt and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. Main conclusions: WUE, WUEt and IWUEt produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.Item Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size(2015-07) O'Neill, Kevin M.; Delphia, Casey M.; Pitts-Singer, Theresa L.During the nesting season, adult females of the solitary bee Megachile rotundata (F.) face considerable physical and energy demands that could include increasing wear and tear on their bodies and decreasing lipid reserves. Consequently, their reproductive performance may be affected not only by extrinsic factors (e.g., weather and floral resource availability), but intrinsic changes in their own bodies. Because of the potential fitness effects of seasonal changes in body condition, our objectives were to determine how wing wear, lipid reserves, and oocyte sizes vary during nesting seasons, beginning when females emerge as adults. As nesting progressed, females in two populations experienced a steady increase in wing wear, which is known to reduce foraging efficiency and increase risk of mortality in other bees. Soon after emergence, females exhibited sharp declines in lipid content which remained low for the remainder of the season. Newly-emerged females ingested pollen, an activity known to be correlated with the initiation of egg maturation in this species. Additionally, the early summer drop in lipid stores was correlated with an increase in the size of the oocytes carried. However, by ∼6 weeks after emergence, oocytes began to decrease in length and volume, perhaps due to nutrient deficiencies related to loss of stored lipids. Our results suggest management of M. rotundata should include rearing bees at temperatures that maximize stored lipid reserves in adults and timing bee release so that significant pollen resources are available for both adults and offspring.