College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Geobiological feedbacks, oxygen, and the evolution of nitrogenase
    (2019-02) Mus, Florence; Colman, Daniel R.; Peters, John W.; Boyd, Eric S.
    Biological nitrogen fixation via the activity of nitrogenase is one of the most important biological innovations, allowing for an increase in global productivity that eventually permitted the emergence of higher forms of life. The complex metalloenzyme termed nitrogenase contains complex iron-sulfur cofactors. Three versions of nitrogenase exist that differ mainly by the presence or absence of a heterometal at the active site metal cluster (either Mo or V). Mo-dependent nitrogenase is the most common while V-dependent or heterometal independent (Fe-only) versions are often termed alternative nitrogenases since they have apparent lower activities for N2 reduction and are expressed in the absence of Mo. Phylogenetic data indicates that biological nitrogen fixation emerged in an anaerobic, thermophilic ancestor of hydrogenotrophic methanogens and later diversified via lateral gene transfer into anaerobic bacteria, and eventually aerobic bacteria including Cyanobacteria. Isotopic evidence suggests that nitrogenase activity existed at 3.2 Ga, prior to the advent of oxygenic photosynthesis and rise of oxygen in the atmosphere, implying the presence of favorable environmental conditions for oxygen-sensitive nitrogenase to evolve. Following the proliferation of oxygenic phototrophs, diazotrophic organisms had to develop strategies to protect nitrogenase from oxygen inactivation and generate the right balance of low potential reducing equivalents and cellular energy for growth and nitrogen fixation activity. Here we review the fundamental advances in our understanding of biological nitrogen fixation in the context of the emergence, evolution, and taxonomic distribution of nitrogenase, with an emphasis placed on key events associated with its emergence and diversification from anoxic to oxic environments.
  • Thumbnail Image
    Item
    Electron transfer to nitrogenase in different genomic and metabolic backgrounds
    (2018-02) Poudel, Saroj; Colman, Daniel R.; Fixen, Kathryn R.; Ledbetter, Rhesa N.; Zheng, Yanning; Pence, Natasha; Seefeldt, Lance C.; Peters, John W.; Hardwood, Caroline S.; Boyd, Eric S.
    Nitrogenase catalyzes the reduction of dinitrogen (N2) using low potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2) sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. Predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the level of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. Acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
  • Thumbnail Image
    Item
    H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle
    (2018-01) Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Nguyen, Diep M. N.; Schut, Gerrit J.; Adams, Michael W. W.; Peters, John W.; Boyd, Eric S.; Bothner, Brian
    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP(+) oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron-sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units.
  • Thumbnail Image
    Item
    Two functionally distinct NADP(+)-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus
    (2017-07) Nguyen, Diep M. N.; Schut, Gerrit J.; Zadvornyy, Oleg A.; Tokmina-Lukaszewska, Monika; Poudel, Saroj; Lipscomb, Gina L.; Adams, Leslie A.; Dinsmore, Jessica T.; Nixon, William J.; Boyd, Eric S.; Bothner, Brian; Peters, John W.; Adams, Michael W. W.
    Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes and NfnII does not catalyze the NfnI bifurcating reaction. Instead it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and to also catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.
  • Thumbnail Image
    Item
    Unification of [FeFe]-hydrogenases into Three Structural and Functional Groups
    (2016-09) Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed Y.; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; Boyd, Eric S.
    Background: [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. Methods: To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. Results: HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggest that they are post-translationally modified by phosphorylation. Conclusions: These results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA. General significance: This classification scheme provides a framework for future biochemical and mutagenesis studies to elucidate the functional role of Hyd enzymes.
  • Thumbnail Image
    Item
    [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation
    (2014-11) Peters, John W.; Schut, Gerrit J.; Boyd, Eric S.; Mulder, David W.; Shepard, Eric M.; Broderick, Joan B.; King, Paul W.; Adams, Michael W. W.
    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
  • Thumbnail Image
    Item
    [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA
    (2014-12) Boyd, Eric S.; Hamilton, Trinity L.; Swanson, Kevin D.; Howells, Alta E.; Meuser, Jonathan E.; Posewitz, Matthew C.; Peters, John W.
    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.