College of Agriculture
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4
As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.
Browse
2 results
Search Results
Item Evaluation of the effectiveness of entomopathogens for the management of wireworms (Coleoptera: Elateridae) on spring wheat(2014-07) Reddy, Gadi V. P.; Tangtrakulwanich, Khanobporn; Wu, Shaohui; Miller, John H.; Ophus, Victoria L.; Prewett, Julie; Jaronski, Stefan T.Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are serious soil dwelling pests of small grains, corn, sugar beets, and potatoes. Limonius californicus and Hypnoidus bicolor are the predominant wireworm species infesting wheat in Montana, particularly in the ‘Golden Triangle’ area of north-central Montana. Wireworm populations in field crops are increasing, but currently available insecticides provide only partial control, and no alternative management tools exist. In our study, three entomopathogenic fungi were tested for their efficacy against wireworms in spring wheat at two field locations (Ledger and Conrad, Montana, USA) in 2013. The three fungi (Metarhizium brunneum F52, Beauveria bassiana GHA, and Metarhizium robertsii DWR 346) were evaluated as seed-coat, in-furrow granular, and soil band-over-row drench applications in addition to imidacloprid (Gaucho® 600) seed treatment (as a chemical check), the approach currently being used by growers. Wireworm damage in these treatments was evaluated as standing plant counts, wireworm population surveys, and yield. The three fungi, applied as formulated granules or soil drenches, and the imidacloprid seed treatment all resulted in significantly higher plant stand counts and yields at both locations than the fungus-coated seed treatments or the untreated control. Significant differences were detected among the application methods but not among the species of fungi within each application method. All three fungi, when applied as granules in furrow or as soil drenches, were more effective than when used as seed-coating treatments for wireworm control, and provided an efficacy comparable or superior to imidacloprid. The fungi used in this study provided significant plant and yield protection under moderate wireworm pressure, supporting their value in the management of this pest.Item Developing nominal threshold levels for Phyllotreta cruciferae (Coleoptera: Chrysomelidae) damage on canola in Montana, USA(2014-12) Tangtrakulwanich, Khanobporn; Reddy, Gadi V. P.; Wu, Shaohui; Miller, John H.; Ophus, Victoria L.; Prewett, JulieThe flea beetles Phyllotreta cruciferae (Goeze) and Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae) are serious pests infesting canola (Brassica napus L.; Brassicales: Brassicaceae) in the Northern Great Plains of the United States. In Montana, P. cruciferae is the only flea beetle species that attacks canola during the crop growing stage. Management of P. cruciferae is usually focused on treating adults feeding on canola seedlings, which is the stage most vulnerable to flea beetle damage. In the Golden Triangle area in Montana, canola growers traditionally use seed treatments or calendar based spraying to control P. cruciferae. Here, we compared calendar-based spraying with seed treatment and threshold-based treatment. The experiment treatments included threshold levels (15–20, 25, 45% of leaf area damaged), calendar based sprays (15, 30 and 45 day intervals after plant emergence), seed treatments (imidacloprid), and untreated controls. The trials were done at two locations (Conrad and Western Triangle Agricultural Research Center). We found that calendar-based spraying at a 15-day interval did not differ significantly in yields from threshold-based treatment at 15–20% leaf damage. Also, the seed treatment did not give significantly higher yields compared to calendar-based sprays. A negative correlation was detected between leaf damage and yield in each treatment. Overall, calendar-based and threshold-based treatments were most effective in improving yields. However, treatment made at the threshold of 15–20% leaf area damage is recommended in order to reduce the number of chemical applications and also to reduce the possibility of selecting for resistance in flea beetles.